scispace - formally typeset
Search or ask a question
Topic

Surface plasmon resonance

About: Surface plasmon resonance is a research topic. Over the lifetime, 24909 publications have been published within this topic receiving 810976 citations. The topic is also known as: Surface plasmon resonance & SPR (technology).


Papers
More filters
Journal ArticleDOI
TL;DR: Enhanced optical Faraday rotation in gold-coated maghemite (gamma-Fe(2)O(3)) nanoparticles is reported and may enable design of nanostructures for remote sensing and imaging of magnetic fields and for miniaturized magneto-optical devices.
Abstract: We report enhanced optical Faraday rotation in gold-coated maghemite (γ-Fe2O3) nanoparticles. The Faraday rotation spectrum measured from 480−690 nm shows a peak at about 530 nm, not present in eit...

279 citations

Journal ArticleDOI
TL;DR: A high-sensitivity surface plasmon resonance (SPR) biosensor based on the Mach-Zehnder interferometer design is presented and a significant improvement over previously obtained results should allow SPR biosensors to become a possible replacement for conventional biosensing techniques based on fluorescence.
Abstract: A high-sensitivity surface plasmon resonance (SPR) biosensor based on the Mach-Zehnder interferometer design is presented. The novel feature of the new design is the use of a Wollaston prism through which the phase quantities of the p and s polarizations are interrogated simultaneously. Since SPR affects only the p polarization, the signal due to the s polarization can be used as the reference. Consequently, the differential phase between the two polarizations allows us to eliminate all common-path phase noise while keeping the phase change caused by the SPR effect. Experimental results obtained from glycerin-water mixtures indicate that the sensitivity limit of our scheme is 5.5 x 10(-8) refractive-index units per 0.01 degrees phase change. To our knowledge, this is a significant improvement over previously obtained results when gold was used as the sensor surface. Such an improvement in the sensitivity limit should allow SPR biosensors to become a possible replacement for conventional biosensing techniques based on fluorescence. Monitoring of the bovine serum albumin (BSA) binding reaction with BSA antibodies is also demonstrated.

278 citations

Journal ArticleDOI
TL;DR: A microcantilever-based immunosensor operated in static deflection mode with a performance comparable with surface plasmon resonance, using single-chain Fv (scFv) antibody fragments as receptor molecules, and was proportional to the antigen concentration in solution.
Abstract: We report a microcantilever-based immunosensor operated in static deflection mode with a performance comparable with surface plasmon resonance, using single-chain Fv (scFv) antibody fragments as receptor molecules. As a model system scFv fragments with specificity to two different antigens were applied. We introduced a cysteine residue at the C terminus of each scFv construct to allow covalent attachment to gold-coated sensor interfaces in directed orientation. Application of an array enabled simultaneous deflection measurements of sensing and reference cantilevers. The differential deflection signal revealed specific antigen binding and was proportional to the antigen concentration in solution. Using small, oriented scFv fragments as receptor molecules we increased the sensitivity of microcantilevers to ≈1 nM.

278 citations

Journal ArticleDOI
TL;DR: Results indicate the efficacy of nanohole arrays as surface plasmon-based sensing elements in a microfluidic platform, adding unique surface-sensitive diagnostic capabilities to the existing suite of microfluidsic-based analytical tools.
Abstract: A microfluidic device with integrated surface plasmon resonance (SPR) chemical and biological sensors based on arrays of nanoholes in gold films is demonstrated. Widespread use of SPR for surface analysis in laboratories has not translated to microfluidic analytical chip platforms, in part due to challenges associated with scaling down the optics and the surface area required for common reflection mode operation. The resonant enhancement of light transmission through subwavelength apertures in a metallic film suggests the use of nanohole arrays as miniaturized SPR-based sensing elements. The device presented here takes advantage of the unique properties of nanohole arrays: surface-based sensitivity; transmission mode operation; a relatively small footprint; and repeatability. Proof-of-concept measurements performed on-chip indicated a response to small changes in refractive index at the array surfaces. A sensitivity of 333 nm per refractive index unit was demonstrated with the integrated device. The devi...

277 citations

Journal ArticleDOI
TL;DR: Far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements.
Abstract: Aluminum is abundant, low in cost, compatible with complementary metal-oxide semiconductor manufacturing methods, and capable of supporting tunable plasmon resonance structures that span the entire visible spectrum. However, the use of Al for color displays has been limited by its intrinsically broad spectral features. Here we show that vivid, highly polarized, and broadly tunable color pixels can be produced from periodic patterns of oriented Al nanorods. Whereas the nanorod longitudinal plasmon resonance is largely responsible for pixel color, far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements. The bright coloration can be observed with p-polarized white light excitation, consistent with the use of this approach in display devices. The resulting color pixels are constructed with a simple design, are compatible with scalable fabrication methods, and provide contrast ratios exceeding 100:1.

277 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,320
20222,684
20211,240
20201,422
20191,498
20181,528