scispace - formally typeset
Search or ask a question
Topic

Surface plasmon resonance

About: Surface plasmon resonance is a research topic. Over the lifetime, 24909 publications have been published within this topic receiving 810976 citations. The topic is also known as: Surface plasmon resonance & SPR (technology).


Papers
More filters
Journal ArticleDOI
TL;DR: A detailed study of the aqueous synthesis of composite 50−150 nm magnetite−gold core−shell nanoparticles with the ability to engineer the coverage of gold on the magnetite particle surface is presented in this article.
Abstract: A detailed study of the aqueous synthesis of composite 50−150 nm magnetite−gold core−shell nanoparticles with the ability to engineer the coverage of gold on the magnetite particle surface is presented. This method utilizes polyethyleneimine for the dual functions of attaching 2 nm gold nanoparticle seeds onto magnetite particles as well as preventing the formation of large aggregates. Saturation of the magnetite surface with gold seeds facilitates the subsequent overlaying of gold to form magnetically responsive core−shell particles, which exhibit surface plasmon resonance. In-depth characterization and quantification of the gold-shell formation process was performed using transmission electron microscopy, X-ray photoelectron spectroscopy, energy-dispersive spectroscopy, and inductively coupled plasma optical emission spectroscopy. Dynamic light scattering studies also showed that PEI coating of synthesized particles served as an excellent barrier against aggregation. The ability of the gold shell to pro...

257 citations

Journal ArticleDOI
TL;DR: In this article, the effect of polyvinyl pyrrolidone (PVP) and polyvinylon alcohol (PVA) on the stabilization of obtained silver colloids was investigated.

256 citations

Journal ArticleDOI
TL;DR: By integrating chemically grown monolayers of MoS2 with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved and stronger exciton-plasmon coupling is achieved resulting in a Fano line shape in the reflection spectrum.
Abstract: The manipulation of light-matter interactions in two-dimensional atomically thin crystals is critical for obtaining new optoelectronic functionalities in these strongly confined materials. Here, by integrating chemically grown monolayers of MoS2 with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved. The enhanced exciton-plasmon coupling enables profound changes in the emission and excitation processes leading to spectrally tunable, large photoluminescence enhancement as well as surface-enhanced Raman scattering at room temperature. Furthermore, due to the decreased damping of MoS2 excitons interacting with the plasmonic resonances of the bowtie array at low temperatures stronger exciton-plasmon coupling is achieved resulting in a Fano line shape in the reflection spectrum. The Fano line shape, which is due to the interference between the pathways involving the excitation of the exciton and plasmon, can be tuned by altering the coupling strengths between the two systems via changing the design of the bowties lattice. The ability to manipulate the optical properties of two-dimensional systems with tunable plasmonic resonators offers a new platform for the design of novel optical devices with precisely tailored responses.

255 citations

Journal ArticleDOI
TL;DR: The binding interactions of small molecules with carbonic anhydrase II were used as model systems to compare the reaction constants determined from surface‐ and solution‐based biophysical methods and binding kinetics were shown to provide more detailed information about complex formation than equilibrium constants alone.
Abstract: The binding interactions of small molecules with carbonic anhydrase II were used as model systems to compare the reaction constants determined from surface- and solution-based biophysical methods. Interaction data were collected for two arylsulfonamide compounds, 4-carboxybenzenesulfonamide (CBS) and 5-dimethyl-amino-1-naphthalene-sulfonamide (DNSA), binding to the enzyme using surface plasmon resonance, isothermal titration calorimetry, and stopped-flow fluorescence. We demonstrate that when the surface plasmon resonance biosensor experiments are performed with care, the equilibrium, thermodynamic, and kinetic constants determined from this surface-based technique match those acquired in solution. These results validate the use of biosensor technology to collect reliable data on small molecules binding to immobilized macromolecular targets. Binding kinetics were shown to provide more detailed information about complex formation than equilibrium constants alone. For example, although carbonic anhydrase II bound DNSA with twofold higher affinity than CBS, kinetic analysis revealed that CBS had a fourfold slower dissociation rate. Analysis of the binding and transition state thermodynamics also revealed significant differences in the enthalpy and entropy of complex formation. The lack of labeling requirements, high information content, and high throughput of surface plasmon resonance biosensors will make this technology an important tool for characterizing the interactions of small molecules with enzymes and receptors.

254 citations

Journal ArticleDOI
TL;DR: The development of a point-of-care immunosensor for the detection of the cancer biomarker (total prostate-specific antigen, tPSA) using surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensor platforms in human serum samples demonstrates the high potential of the developed sensor devices as platforms for clinical prostate cancer diagnosis and prognosis.
Abstract: Early detection of cancer is vital for the successful treatment of the disease. Hence, a rapid and sensitive diagnosis is essential before the cancer is spread out to the other body organs. Here we describe the development of a point-of-care immunosensor for the detection of the cancer biomarker (total prostate-specific antigen, tPSA) using surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensor platforms in human serum samples. KD of the antibody used toward PSA was calculated as 9.46 × 10–10 M, indicating high affinity of the antibody used in developing the assay. By performing a sandwich assay using antibody-modified nanoparticles concentrations of 2.3 ng mL–1 (Au, 20 nm) and 0.29 ng mL–1 (8.5 pM) (Au, 40 nm) tPSA in 75% human serum were detected using the developed assay on an SPR sensor chip. The SPR sensor results were found to be comparable to that achieved using a QCM sensor platform, indicating that both systems can be applied for disease biomarkers screening. The clinical ap...

253 citations


Network Information
Related Topics (5)
Nanoparticle
85.9K papers, 2.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Raman spectroscopy
122.6K papers, 2.8M citations
90% related
Thin film
275.5K papers, 4.5M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,320
20222,684
20211,240
20201,422
20191,498
20181,528