scispace - formally typeset
Topic

Surface states

About: Surface states is a(n) research topic. Over the lifetime, 11143 publication(s) have been published within this topic receiving 307395 citation(s).
Papers
More filters

Journal ArticleDOI
01 Jun 2009-Nature Physics
Abstract: Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of topologically protected states in two-dimensional and three-dimensional band insulators with large spin–orbit coupling. So far, the only known three-dimensional topological insulator is BixSb1−x, which is an alloy with complex surface states. Here, we present the results of first-principles electronic structure calculations of the layered, stoichiometric crystals Sb2Te3, Sb2Se3, Bi2Te3 and Bi2Se3. Our calculations predict that Sb2Te3, Bi2Te3 and Bi2Se3 are topological insulators, whereas Sb2Se3 is not. These topological insulators have robust and simple surface states consisting of a single Dirac cone at the Γ point. In addition, we predict that Bi2Se3 has a topologically non-trivial energy gap of 0.3 eV, which is larger than the energy scale of room temperature. We further present a simple and unified continuum model that captures the salient topological features of this class of materials. First-principles calculations predict that Bi2Se3, Bi2Te3 and Sb2Te3 are topological insulators—three-dimensional semiconductors with unusual surface states generated by spin–orbit coupling—whose surface states are described by a single gapless Dirac cone. The calculations further predict that Bi2Se3 has a non-trivial energy gap larger than the energy scale kBT at room temperature.

4,335 citations


Journal ArticleDOI
10 Jul 2009-Science
TL;DR: The results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface, and points to promising potential for high-temperature spintronics applications.
Abstract: Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to promising potential for high-temperature spintronics applications.

2,499 citations


Journal ArticleDOI
Abstract: The study of tin oxide is motivated by its applications as a solid state gas sensor material, oxidation catalyst, and transparent conductor. This review describes the physical and chemical properties that make tin oxide a suitable material for these purposes. The emphasis is on surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface science studies with the broader field of materials science of tin oxide. The key for understanding many aspects of SnO 2 surface properties is the dual valency of Sn. The dual valency facilitates a reversible transformation of the surface composition from stoichiometric surfaces with Sn 4+ surface cations into a reduced surface with Sn 2+ surface cations depending on the oxygen chemical potential of the system. Reduction of the surface modifies the surface electronic structure by formation of Sn 5s derived surface states that lie deep within the band gap and also cause a lowering of the work function. The gas sensing mechanism appears, however, only to be indirectly influenced by the surface composition of SnO 2 . Critical for triggering a gas response are not the lattice oxygen concentration but chemisorbed (or ionosorbed) oxygen and other molecules with a net electric charge. Band bending induced by charged molecules cause the increase or decrease in surface conductivity responsible for the gas response signal. In most applications tin oxide is modified by additives to either increase the charge carrier concentration by donor atoms, or to increase the gas sensitivity or the catalytic activity by metal additives. Some of the basic concepts by which additives modify the gas sensing and catalytic properties of SnO 2 are discussed and the few surface science studies of doped SnO 2 are reviewed. Epitaxial SnO 2 films may facilitate the surface science studies of doped films in the future. To this end film growth on titania, alumina, and Pt(1 1 1) is reviewed. Thin films on alumina also make promising test systems for probing gas sensing behavior. Molecular adsorption and reaction studies on SnO 2 surfaces have been hampered by the challenges of preparing well-characterized surfaces. Nevertheless some experimental and theoretical studies have been performed and are reviewed. Of particular interest in these studies was the influence of the surface composition on its chemical properties. Finally, the variety of recently synthesized tin oxide nanoscopic materials is summarized.

2,039 citations


Journal Article
Abstract: Three-dimensional topological insulators are a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. By investigating the surface state of Bi2Te3 with angle-resolved photoemission spectroscopy, we demonstrate that the surface state consists of a single nondegenerate Dirac cone. Furthermore, with appropriate hole doping, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states. Our results establish that Bi2Te3 is a simple model system for the three-dimensional topological insulator with a single Dirac cone on the surface. The large bulk gap of Bi2Te3 also points to promising potential for high-temperature spintronics applications.

1,996 citations


Journal ArticleDOI
10 Dec 1995-Surface Science
Abstract: Based on density functional theory calculations of H 2 dissociation on Al(111), Cu(111), Pt(111) and Cu 3 Pt(111) we present a consistent picture of some key physical properties determining the reactivity of metal and alloy surfaces. The four metal surfaces are chosen to represent metals with no t -bands, with filled d -bands and with d -states at the Fermi level. We show that electronic states in the entire valence band of the metal surface are responsible for the reactivity, which consequently cannot be understood solely in terms of the density of states at the Fermi nor in terms d -states above it. Rather we suggest that trends in reactivities can be understood in terms of the hybridization energy between the bonding and anti-bonding adsorbate states and the metal d -bands (when present), and we demonstrate that a simple frozen potential based estimate of the hybridization energy correlates well with the calculated variation of the barrier height for the different metal surfaces.

1,684 citations


Network Information
Related Topics (5)
Scanning tunneling microscope

26.5K papers, 738.1K citations

96% related
Fermi level

27.1K papers, 652.4K citations

96% related
Band bending

3.9K papers, 99.7K citations

96% related
Scanning tunneling spectroscopy

7.8K papers, 213.8K citations

96% related
Work function

9.1K papers, 229.4K citations

95% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202212
2021268
2020294
2019312
2018355
2017330

Top Attributes

Show by:

Topic's top 5 most impactful authors

Eugene V. Chulkov

33 papers, 2.1K citations

Pedro M. Echenique

28 papers, 1.5K citations

W. E. Spicer

20 papers, 776 citations

Hideki Hasegawa

20 papers, 471 citations

Robert J. Cava

18 papers, 3K citations