scispace - formally typeset
Search or ask a question
Topic

Surface tension

About: Surface tension is a research topic. Over the lifetime, 25410 publications have been published within this topic receiving 695471 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The typical phase behavior of microemulsion systems undergoing phase inversion is briefly reviewed in this article, where the mean and Gaussian curvatures of the interfacial film with temperature are determined.
Abstract: The typical phase behavior of microemulsion systems undergoing phase inversion is briefly reviewed. As a model system H2O-n-octane-C12E5 is studied with various experimental techniques. The occurring microstructures are visualized by freeze fracture electron microscopy and the corresponding domain sizes are quantified by small-angle neutron scattering. From the variations of the domain sizes the mean and Gaussian curvatures of the interfacial film with temperature are determined. It is found that the mean interfacial curvatureH changes gradually and nearly linearly with temperature from positive (Winsor I) to negative (Winsor II), passing through zero for bicontinuous microemulsions where these contain exactly equal volume fractions of water and oil. There the interfacial tension between bulk water-and oil-rich phases passes through an extreme minimum. Quantitative knowledge of the curvatures permits the measurements of interfacial tensions between the bulk phases to be discussed in terms of the relative contributions of bending energy and entropy of dispersion.

486 citations

Journal ArticleDOI
Bin Dong1, Na Li1, Liqiang Zheng1, Li Yu1, Tohru Inoue1 
09 Mar 2007-Langmuir
TL;DR: It was found that both the pC20 and the Picmc values were somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides, and comparable to typical anionic surfactant, sodiumAlkyl sulfates.
Abstract: Aqueous solutions of three kinds of surface active ionic liquids composed of the 1-alkyl-3-methylimidazolium cation have been investigated by means of surface tension and electrical conductivity measurements at room temperature (298 K). The surface tension measurements provided a series of parameters, including critical micelle concentration (cmc), surface tension at the cmc (γcmc), adsorption efficiency (pC20), and effectiveness of surface tension reduction (Πcmc). In addition, with application of the Gibbs adsorption isotherm, maximum surface excess concentration (Γmax) and minimum surface area/molecule (Amin) at the air−water interface were estimated. The effect of sodium halides, NaCl, NaBr, and NaI, on the surface activity was also investigated. It was found that both the pC20 and the Πcmc were rather larger than those reported for traditional ionic surfactants and the cmc values were somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides, and comparable to typica...

484 citations

Journal ArticleDOI
TL;DR: In this article, an experimental and theoretical study of the deformation of a spherical liquid droplet colliding with a flat surface is presented, which accounts for the presence of inertia, viscous, gravitation, surface tension, and wetting effects, including the phenomenon of contact angle hysteresis.
Abstract: In this paper an experimental and theoretical study of the deformation of a spherical liquid droplet colliding with a flat surface is presented. The theoretical model accounts for the presence of inertia, viscous, gravitation, surface tension, and wetting effects, including the phenomenon of contact‐angle hysteresis. Experiments with impingement surfaces of different wettability were performed. The study showed that the maximum splat radius decreased as the value of the advancing contact angle increased. The effect of impact velocity on droplet spreading was more pronounced when the wetting was limited. The experimental results were compared to the numerical predictions in terms of droplet deformation, splat radius, and splat height. The theoretical model predicted well the deformation of the impacting droplet, not only in the spreading phase, but also during recoiling and oscillation. The wettability of the substrate upon which the droplet impinges was found to affect significantly all phases of the spre...

480 citations

Journal ArticleDOI
TL;DR: In this paper, surface roughness-augmented wettability on critical heat flux (CHF) during pool boiling with horizontally oriented surfaces was investigated, and an analytical force-balance model was extended to explain the CHF enhancement.
Abstract: We experimentally investigated surface roughness-augmented wettability on critical heat flux (CHF) during pool boiling with horizontally oriented surfaces. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a maximum CHF of ∼208 W/cm2 was achieved with a surface roughness of ∼6. An analytical force-balance model was extended to explain the CHF enhancement. The excellent agreement found between the model and experimental data supports the idea that roughness-amplified capillary forces are responsible for the CHF enhancement on structured surfaces. The insights gained from this work suggest design guidelines for new surface technologies with high heat removal capability.

477 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
85% related
Aqueous solution
189.5K papers, 3.4M citations
84% related
Nanoparticle
85.9K papers, 2.6M citations
82% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Oxide
213.4K papers, 3.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,074
20222,426
2021804
2020816
2019843
2018828