scispace - formally typeset
Search or ask a question
Topic

Surface tension

About: Surface tension is a research topic. Over the lifetime, 25410 publications have been published within this topic receiving 695471 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the collision dynamics of a liquid droplet on a solid metallic surface were studied using a flash photographic method, which provided clear images of the droplet structure during the deformation process.
Abstract: The collision dynamics of a liquid droplet on a solid metallic surface were studied using a flash photographic method. The intent was to provide clear images of the droplet structure during the deformation process. The ambient pressure (0.101 MPa), surface material (polished stainless steel), initial droplet diameter (about 1.5 mm), liquid (n-heptane) and impact Weber number (43) were fixed. The primary parameter was the surface temperature, which ranged from 24 degrees C to above the Leidenfrost temperature of the liquid. Experiments were also performed on a droplet impacting a surface on which there existed a liquid film created by deposition of a prior droplet. The evolution of wetted area and spreading rate, both of a droplet on a stainless steel surface and of a droplet spreading over a thin liquid film, were found to be independent of surface temperature during the early period of impact. This result was attributed to negligible surface tension and viscous effects, and in consequence the measurements made during the early period of the impact process were in good agreement with previously published analyses which neglected these effects. A single bubble was observed to form within the droplet during impact at low temperatures. As surface temperature was increased the population of bubbles within the droplet also increased because of progressive activation of nucleation sites on the stainless steel surface. At surface temperatures near to the boiling point of heptane, a spoke-like cellular structure in the liquid was created during the spreading process by coalescence of a ring of bubbles that had formed within the droplet. At higher temperatures, but below the Leidenfrost point, numerous bubbles appeared within the droplet, yet the overall droplet shape, particularly in the early stages of impact (< 0.8 ms), was unaffected by the presence of these bubbles. The maximum value of the diameter of liquid which spreads on the surface is shown to agree with predictions from a simplified model.

1,032 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the properties of seawater is presented in terms of regression equations as functions of temperature and salinity, and the available correlations for each property are summarized with their range of validity and accuracy.
Abstract: Correlations and data for the thermophysical properties of seawater are reviewed. Properties examined include density, specific heat capacity, thermal conductivity, dynamic viscosity, surface tension, vapor pressure, boiling point elevation, latent heat of vaporization, specifi c enthalpy, specific entropy and osmotic coefficient. These properties include those needed for design of thermal and membrane desalination processes. Results are presented in terms of regression equations as functions of temperature and salinity. The available correlations for each property are summarized with their range of validity and accuracy. Best-fi tted new correlations are obtained from available data for density, dynamic viscosity, surface tension, boiling point elevation, specifi c enthalpy, specific entropy and osmotic coefficient after appropriate conversion of temperature and salinity scales to the most recent standards. In addition, a model for latent heat of vaporization is suggested. Comparisons are carried out amo...

1,008 citations

Journal ArticleDOI
TL;DR: In this paper, the surface tension of aqueous solutions of methanol, ethanol, 1-propanol, and 2propanols was measured over the entire concentration range at temperatures of 20-50 C. The experimental values were correlated with temperature and with mole fraction.
Abstract: The surface tension of mixtures is a physical property of great importance for mass transfer processes such as distillation, extraction, or absorption. The surface tension of aqueous solutions of methanol, ethanol, 1-propanol, and 2-propanol was measured over the entire concentration range at temperatures of 20--50 C. The experimental values were correlated with temperature and with mole fraction. The maximum deviation was in both cases always less than 3%.

1,005 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of liquid inertia, viscosity, and surface tension, but also the surrounding gas.
Abstract: A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

994 citations

Journal ArticleDOI
Souheng Wu1
TL;DR: In this paper, the formation of dispersed phase in blends of incompatible polymers during melt extrusion with a co-rotating twin screw extruder was studied, using nylon and polyester as the matrix and ethylene-propylene rubbers as the dispersed phase.
Abstract: The formation of dispersed phase in blends of incompatible polymers during melt extrusion with a co-rotating twin screw extruder was studied, using nylon and polyester as the matrix and ethylene-propylene rubbers as the dispersed phase. A master curve is obtained, i.e., Gηmα/γ = 4p±0.84, where G is the shear rate, γ the particle diameter, η the interfacial tension, ηm the matrix viscosity, ηd the dispersed-drop viscosity, and p = ηd/ηm. The plus (+) sign applies for p > 1, and the minus (−) sign for p < 1. Thus, the dispersed-drop size is directly proportional to the interfacial tension and the ±0.84 power of viscosity ratio. The dispersed drops are the smaller, when the interfacial tension is the lower and the viscosity ratio is the closer to unity. The interfacial tension is largely controlled by the polarities of the two phases, and can be varied over several orders of magnitude by using appropriate dispersants.

976 citations


Network Information
Related Topics (5)
Adsorption
226.4K papers, 5.9M citations
85% related
Aqueous solution
189.5K papers, 3.4M citations
84% related
Nanoparticle
85.9K papers, 2.6M citations
82% related
Carbon nanotube
109K papers, 3.6M citations
82% related
Oxide
213.4K papers, 3.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,074
20222,426
2021804
2020816
2019843
2018828