scispace - formally typeset
Search or ask a question
Topic

Surfactin

About: Surfactin is a research topic. Over the lifetime, 1379 publications have been published within this topic receiving 48608 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of a sensitive plant infection model demonstrating that the bacterial pathogen Pseudomonas syringae pv tomato DC3000 is capable of infecting Arabidopsis roots both in vitro and in soil is reported.
Abstract: Relatively little is known about the exact mechanisms used by Bacillus subtilis in its behavior as a biocontrol agent on plants. Here, we report the development of a sensitive plant infection model demonstrating that the bacterial pathogen Pseudomonas syringae pv tomato DC3000 is capable of infecting Arabidopsis roots both in vitro and in soil. Using this infection model, we demonstrated the biocontrol ability of a wild-type B. subtilis strain 6051 against P. syringae. Arabidopsis root surfaces treated with B. subtilis were analyzed with confocal scanning laser microscopy to reveal a three-dimensional B. subtilis biofilm. It is known that formation of biofilms by B. subtilis is a complex process that includes secretion of surfactin, a lipopeptide antimicrobial agent. To determine the role of surfactin in biocontrol by B. subtilis, we tested a mutant strain, M1, with a deletion in a surfactin synthase gene and, thus, deficient in surfactin production. B. subtilis M1 was ineffective as a biocontrol agent against P. syringae infectivity in Arabidopsis and also failed to form robust biofilms on either roots or inert surfaces. The antibacterial activity of surfactin against P. syringae was determined in both broth and agar cultures and also by live-dead staining methods. Although the minimum inhibitory concentrations determined were relatively high (25 μg mL-1), the levels of the lipopeptide in roots colonized by B. subtilis are likely to be sufficient to kill P. syringae. Our results collectively indicate that upon root colonization, B. subtilis 6051 forms a stable, extensive biofilm and secretes surfactin, which act together to protect plants against attack by pathogenic bacteria.

910 citations

Journal ArticleDOI
TL;DR: A fine study of the structure/function relationships associated with the three-dimensional structure has led to the recognition of the specific residues required for activity in surfactin biosynthesis and will assist researchers in the selection of molecules with improved and/or refined properties useful in oil and biomedical industries.
Abstract: The name surfactin refers to a bacterial cyclic lipopeptide, primarily renowned for its exceptional surfactant power since it lowers the surface tension of water from 72 mN m-1 to 27 mN m-1 at a concentration as low as 20 microM. Although surfactin was discovered about 30 years ago, there has been a revival of interest in this compound over the past decade, triggered by an increasing demand for effective biosurfactants for difficult contemporary ecological problems. This simple molecule also looks very promising as an antitumoral, antiviral and anti-Mycoplasma agent. Structural characteristics show the presence of a heptapeptide with an LLDLLDL chiral sequence linked, via a lactone bond, to a beta-hydroxy fatty acid with 13-15 C atoms. In solution, the molecule exhibits a characteristic "horse saddle" conformation that accounts for its large spectrum of biological activity, making it very attractive for both industrial applications and academic studies. Surfactin biosynthesis is catalysed non-ribosomally by the action of a large multienzyme complex consisting of four modular building blocks, called the surfactin synthetase. The biosynthetic activity involves the multicarrier thiotemplate mechanism and the enzyme is organized in structural domains that place it in the family of peptide synthetases, a class of enzymes involved in peptidic secondary-metabolite synthesis. The srfA operon, the sfp gene encoding a 4'-phosphopantetheinyltransferase and the comA regulatory gene work together for surfactin biosynthesis, while the gene encoding the acyltransferase remains to be isolated. Concerning surfactin production, there is no indication whether the genetic regulation, involving a quorum-sensing mechanism, overrides other regulation factors promoted by the fermentation conditions. Knowledge of the modular arrangement of the peptide synthetases is of the utmost relevance to combinatorial biosynthetic approaches and has been successfully used at the gene level to modify the surfactin template. Biosynthetic and genetic rationales have been described for building variants. A fine study of the structure/function relationships associated with the three-dimensional structure has led to the recognition of the specific residues required for activity. These studies will assist researchers in the selection of molecules with improved and/or refined properties useful in oil and biomedical industries.

738 citations

Journal ArticleDOI
TL;DR: Experiments conducted on bean and tomato plants showed that overexpression of both surfactin and fengycin biosynthetic genes in the naturally poor producer Bacillus subtilis strain 168 was associated with a significant increase in the potential of the derivatives to induce resistance.
Abstract: Summary Multiple strains of Bacillus spp. were demonstrated to stimulate plant defence responses. However, very little is known about the nature of molecular determi- nants secreted by these Gram-positive bacteria that are responsible for the elicitation of the induced systemic resistance (ISR) phenomenon. This study shows that the lipopeptides surfactins and fengycins may be involved in this elicitation process. In bean, pure fengycins and surfactins provided a significant ISR-mediated protective effect on bean plants, similar to the one induced by living cells of the producing strain S499. Moreover, experiments conducted on bean and tomato plants showed that overexpression of both surfactin and fengycin biosynthetic genes in the naturally poor producer Bacillus subtilis strain 168 was associated with a significant increase in the potential of the derivatives to induce resistance. In tomato cells, key enzymes of the lipoxygenase pathway appeared to be activated in resistant plants following induction by lipopeptide overproducers. To our knowledge, such lipopeptides constitute a novel class of compounds from non-pathogenic bacteria that can be perceived by plant cells as signals to initiate defence mechanisms.

688 citations

Journal ArticleDOI
TL;DR: In contrast to other phosphopantetheinyl transferases (PPTases) previously examined, Sfp will modify the apo forms of heterologous recombinant proteins, including the PCP domain of Saccharomyces cerevisiae Lys2, the aryl carrier protein (ArCP) domain of Escherichia coli EntB, and the E. coli acyl carrierprotein (ACP) subunit, suggesting Sfp as a good candidate forheterologous coexpression
Abstract: The Bacillus subtilis enzyme Sfp, required for production of the lipoheptapeptide antibiotic surfactin, posttranslationally phosphopantetheinylates a serine residue in each of the seven peptidyl carrier protein domains of the first three subunits (SrfABC) of surfactin synthetase to yield docking sites for amino acid loading and peptide bond formation. With recombinant Sfp and 16−17-kDa peptidyl carrier protein (PCP) domains excised from the SrfB1 and SrfB2 modules as apo substrates, kcat values of 56−104 min-1 and Km values of 1.3−1.8 μM were determined, indicating equivalent recognition of the adjacent PCP domains by Sfp. In contrast to other phosphopantetheinyl transferases (PPTases) previously examined, Sfp will modify the apo forms of heterologous recombinant proteins, including the PCP domain of Saccharomyces cerevisiae Lys2 (involved in lysine biosynthesis), the aryl carrier protein (ArCP) domain of Escherichia coli EntB (involved in enterobactin biosynthesis), and the E. coli acyl carrier protein (...

622 citations


Network Information
Related Topics (5)
Escherichia coli
59K papers, 2M citations
79% related
Saccharomyces cerevisiae
32.1K papers, 1.6M citations
78% related
Biofilm
23K papers, 906.8K citations
78% related
Plasmid
44.3K papers, 1.9M citations
78% related
Fermentation
68.8K papers, 1.2M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202389
2022192
2021115
202094
2019103
201876