Topic

# Swarm intelligence

About: Swarm intelligence is a research topic. Over the lifetime, 9390 publications have been published within this topic receiving 294548 citations. The topic is also known as: SI & ubiquitous computing.

##### Papers published on a yearly basis

##### Papers

More filters

••

06 Aug 2002

TL;DR: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced, and the evolution of several paradigms is outlined, and an implementation of one of the paradigm is discussed.

Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described.

35,104 citations

••

TL;DR: A snapshot of particle swarming from the authors’ perspective, including variations in the algorithm, current and ongoing research, applications and open problems, is included.

Abstract: A concept for the optimization of nonlinear functions using particle swarm methodology is introduced The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed Benchmark testing of the paradigm is described, and applications, including nonlinear function optimization and neural network training, are proposed The relationships between particle swarm optimization and both artificial life and genetic algorithms are described

18,439 citations

•

01 Jan 2004

TL;DR: Ant colony optimization (ACO) is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals as discussed by the authors In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization.

Abstract: Swarm intelligence is a relatively new approach to problem solving that takes inspiration from the social behaviors of insects and of other animals In particular, ants have inspired a number of methods and techniques among which the most studied and the most successful is the general purpose optimization technique known as ant colony optimization Ant colony optimization (ACO) takes inspiration from the foraging behavior of some ant species These ants deposit pheromone on the ground in order to mark some favorable path that should be followed by other members of the colony Ant colony optimization exploits a similar mechanism for solving optimization problems From the early nineties, when the first ant colony optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO The goal of this article is to introduce ant colony optimization and to survey its most notable applications

6,861 citations

••

TL;DR: Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm that is used for optimizing multivariable functions and the results showed that ABC outperforms the other algorithms.

Abstract: Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees' swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.

6,377 citations

••

01 Jan 1999TL;DR: This chapter discusses Ant Foraging Behavior, Combinatorial Optimization, and Routing in Communications Networks, and its application to Data Analysis and Graph Partitioning.

Abstract: 1. Introduction 2. Ant Foraging Behavior, Combinatorial Optimization, and Routing in Communications Networks 3. Division of Labor and Task Allocation 4. Cemetery Organization, Brood Sorting, Data Analysis, and Graph Partitioning 5. Self-Organization and Templates: Application to Data Analysis and Graph Partitioning 6. Nest Building and Self-Assembling 7. Cooperative Transport by Insects and Robots 8. Epilogue

5,822 citations