scispace - formally typeset
Search or ask a question
Topic

Swarm intelligence

About: Swarm intelligence is a research topic. Over the lifetime, 9390 publications have been published within this topic receiving 294548 citations. The topic is also known as: SI & ubiquitous computing.


Papers
More filters
Journal ArticleDOI
TL;DR: A theoretical framework for design and analysis of distributed flocking algorithms, and shows that migration of flocks can be performed using a peer-to-peer network of agents, i.e., "flocks need no leaders."
Abstract: In this paper, we present a theoretical framework for design and analysis of distributed flocking algorithms. Two cases of flocking in free-space and presence of multiple obstacles are considered. We present three flocking algorithms: two for free-flocking and one for constrained flocking. A comprehensive analysis of the first two algorithms is provided. We demonstrate the first algorithm embodies all three rules of Reynolds. This is a formal approach to extraction of interaction rules that lead to the emergence of collective behavior. We show that the first algorithm generically leads to regular fragmentation, whereas the second and third algorithms both lead to flocking. A systematic method is provided for construction of cost functions (or collective potentials) for flocking. These collective potentials penalize deviation from a class of lattice-shape objects called /spl alpha/-lattices. We use a multi-species framework for construction of collective potentials that consist of flock-members, or /spl alpha/-agents, and virtual agents associated with /spl alpha/-agents called /spl beta/- and /spl gamma/-agents. We show that migration of flocks can be performed using a peer-to-peer network of agents, i.e., "flocks need no leaders." A "universal" definition of flocking for particle systems with similarities to Lyapunov stability is given. Several simulation results are provided that demonstrate performing 2-D and 3-D flocking, split/rejoin maneuver, and squeezing maneuver for hundreds of agents using the proposed algorithms.

4,693 citations

Journal ArticleDOI
TL;DR: The basics are discussed and a survey of a complete set of nonparametric procedures developed to perform both pairwise and multiple comparisons, for multi-problem analysis are given.
Abstract: a b s t r a c t The interest in nonparametric statistical analysis has grown recently in the field of computational intelligence. In many experimental studies, the lack of the required properties for a proper application of parametric procedures - independence, normality, and homoscedasticity - yields to nonparametric ones the task of performing a rigorous comparison among algorithms. In this paper, we will discuss the basics and give a survey of a complete set of nonparametric procedures developed to perform both pairwise and multiple comparisons, for multi-problem analysis. The test problems of the CEC'2005 special session on real parameter optimization will help to illustrate the use of the tests throughout this tutorial, analyzing the results of a set of well-known evolutionary and swarm intelligence algorithms. This tutorial is concluded with a compilation of considerations and recommendations, which will guide practitioners when using these tests to contrast their experimental results.

3,832 citations

Journal ArticleDOI
TL;DR: An approach in which Pareto dominance is incorporated into particle swarm optimization (PSO) in order to allow this heuristic to handle problems with several objective functions and indicates that the approach is highly competitive and that can be considered a viable alternative to solve multiobjective optimization problems.
Abstract: This paper presents an approach in which Pareto dominance is incorporated into particle swarm optimization (PSO) in order to allow this heuristic to handle problems with several objective functions. Unlike other current proposals to extend PSO to solve multiobjective optimization problems, our algorithm uses a secondary (i.e., external) repository of particles that is later used by other particles to guide their own flight. We also incorporate a special mutation operator that enriches the exploratory capabilities of our algorithm. The proposed approach is validated using several test functions and metrics taken from the standard literature on evolutionary multiobjective optimization. Results indicate that the approach is highly competitive and that can be considered a viable alternative to solve multiobjective optimization problems.

3,474 citations

Book ChapterDOI
26 Oct 2009
TL;DR: In this article, a new Firefly Algorithm (FA) was proposed for multimodal optimization applications. And the proposed FA was compared with other metaheuristic algorithms such as particle swarm optimization (PSO).
Abstract: Nature-inspired algorithms are among the most powerful algorithms for optimization. This paper intends to provide a detailed description of a new Firefly Algorithm (FA) for multimodal optimization applications. We will compare the proposed firefly algorithm with other metaheuristic algorithms such as particle swarm optimization (PSO). Simulations and results indicate that the proposed firefly algorithm is superior to existing metaheuristic algorithms. Finally we will discuss its applications and implications for further research.

3,436 citations

Journal ArticleDOI
TL;DR: This paper discusses natural biogeography and its mathematics, and then discusses how it can be used to solve optimization problems, and sees that BBO has features in common with other biology-based optimization methods, such as GAs and particle swarm optimization (PSO).
Abstract: Biogeography is the study of the geographical distribution of biological organisms. Mathematical equations that govern the distribution of organisms were first discovered and developed during the 1960s. The mindset of the engineer is that we can learn from nature. This motivates the application of biogeography to optimization problems. Just as the mathematics of biological genetics inspired the development of genetic algorithms (GAs), and the mathematics of biological neurons inspired the development of artificial neural networks, this paper considers the mathematics of biogeography as the basis for the development of a new field: biogeography-based optimization (BBO). We discuss natural biogeography and its mathematics, and then discuss how it can be used to solve optimization problems. We see that BBO has features in common with other biology-based optimization methods, such as GAs and particle swarm optimization (PSO). This makes BBO applicable to many of the same types of problems that GAs and PSO are used for, namely, high-dimension problems with multiple local optima. However, BBO also has some features that are unique among biology-based optimization methods. We demonstrate the performance of BBO on a set of 14 standard benchmarks and compare it with seven other biology-based optimization algorithms. We also demonstrate BBO on a real-world sensor selection problem for aircraft engine health estimation.

3,418 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
90% related
Artificial neural network
207K papers, 4.5M citations
88% related
Fuzzy logic
151.2K papers, 2.3M citations
87% related
Feature extraction
111.8K papers, 2.1M citations
85% related
Wireless sensor network
142K papers, 2.4M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023232
2022566
2021609
2020673
2019626
2018602