scispace - formally typeset
Search or ask a question
Topic

Symbol rate

About: Symbol rate is a research topic. Over the lifetime, 3888 publications have been published within this topic receiving 71777 citations. The topic is also known as: baud rate & modulation rate.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.
Abstract: This paper is motivated by the need for fundamental understanding of ultimate limits of bandwidth efficient delivery of higher bit-rates in digital wireless communications and to also begin to look into how these limits might be approached. We examine exploitation of multi-element array (MEA) technology, that is processing the spatial dimension (not just the time dimension) to improve wireless capacities in certain applications. Specifically, we present some basic information theory results that promise great advantages of using MEAs in wireless LANs and building to building wireless communication links. We explore the important case when the channel characteristic is not available at the transmitter but the receiver knows (tracks) the characteristic which is subject to Rayleigh fading. Fixing the overall transmitted power, we express the capacity offered by MEA technology and we see how the capacity scales with increasing SNR for a large but practical number, n, of antenna elements at both transmitter and receiver. We investigate the case of independent Rayleigh faded paths between antenna elements and find that with high probability extraordinary capacity is available. Compared to the baseline n = 1 case, which by Shannon‘s classical formula scales as one more bit/cycle for every 3 dB of signal-to-noise ratio (SNR) increase, remarkably with MEAs, the scaling is almost like n more bits/cycle for each 3 dB increase in SNR. To illustrate how great this capacity is, even for small n, take the cases n = 2, 4 and 16 at an average received SNR of 21 dB. For over 99% of the channels the capacity is about 7, 19 and 88 bits/cycle respectively, while if n = 1 there is only about 1.2 bit/cycle at the 99% level. For say a symbol rate equal to the channel bandwith, since it is the bits/symbol/dimension that is relevant for signal constellations, these higher capacities are not unreasonable. The 19 bits/cycle for n = 4 amounts to 4.75 bits/symbol/dimension while 88 bits/cycle for n = 16 amounts to 5.5 bits/symbol/dimension. Standard approaches such as selection and optimum combining are seen to be deficient when compared to what will ultimately be possible. New codecs need to be invented to realize a hefty portion of the great capacity promised.

10,526 citations

Journal ArticleDOI
TL;DR: In this paper, the bit error rate in binary-phase-shift-keying (BPSK) and in quadrature phase-shift keying (QPSK), for a tight upper bound on the symbol error rate for 16-QAM was presented.
Abstract: The author presents pilot-symbol-assisted modulation (PSAM) on a solid analytical basis, a feature missing from previous work. Closed-form expressions are presented for the bit error rate (BER) in binary-phase-shift-keying (BPSK) and in quadrature-phase-shift-keying (QPSK), for a tight upper bound on the symbol error rate in 16 quadrature-amplitude-modulation (16-QAM), and for the optimized receiver coefficients. The error rates obtained are lower than for differential detection for any combination of signal-to-noise ratio (SNR) and Doppler spread, and the performance is within 1 dB of a perfect reference system under slow-fading conditions and within 3 dB when the Doppler spread is 5% of the symbol rate. >

1,475 citations

Journal ArticleDOI
TL;DR: An in depth study on the performance of deep learning based radio signal classification for radio communications signals considers a rigorous baseline method using higher order moments and strong boosted gradient tree classification, and compares performance between the two approaches across a range of configurations and channel impairments.
Abstract: We conduct an in depth study on the performance of deep learning based radio signal classification for radio communications signals. We consider a rigorous baseline method using higher order moments and strong boosted gradient tree classification, and compare performance between the two approaches across a range of configurations and channel impairments. We consider the effects of carrier frequency offset, symbol rate, and multipath fading in simulation, and conduct over-the-air measurement of radio classification performance in the lab using software radios, and we compare performance and training strategies for both. Finally, we conclude with a discussion of remaining problems, and design considerations for using such techniques.

865 citations

Journal ArticleDOI
TL;DR: This work proposes the combination of opportunistic mode selection and transmit power adaptation for maximizing instantaneous and average spectral efficiency after noting that the trade-off favors alternately the modes during operation.
Abstract: Focusing on two-antenna infrastructure relays employed for coverage extension, we develop hybrid techniques that switch opportunistically between full-duplex and half-duplex relaying modes. To rationalize the system design, the classic three-node full-duplex relay link is first amended by explicitly modeling residual relay self-interference, i.e., a loopback signal from the transmit antenna to the receive antenna remaining after cancellation. The motivation for opportunistic mode selection stems then from the fundamental trade-off determining the spectral efficiency: The half-duplex mode avoids inherently the self-interference at the cost of halving the end-to-end symbol rate while the full-duplex mode achieves full symbol rate but, in practice, suffers from residual interference even after cancellation. We propose the combination of opportunistic mode selection and transmit power adaptation for maximizing instantaneous and average spectral efficiency after noting that the trade-off favors alternately the modes during operation. The analysis covers both common relaying protocols (amplify-and-forward and decode-and-forward) as well as reflects the difference of downlink and uplink systems. The results show that opportunistic mode selection offers significant performance gain over system design that is confined to either mode without rationalization.

674 citations


Network Information
Related Topics (5)
Fading
55.4K papers, 1M citations
85% related
Wireless network
122.5K papers, 2.1M citations
84% related
Wireless
133.4K papers, 1.9M citations
84% related
Network packet
159.7K papers, 2.2M citations
83% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236
202235
202180
2020118
2019117
2018129