scispace - formally typeset
Search or ask a question
Topic

Symmetry (physics)

About: Symmetry (physics) is a research topic. Over the lifetime, 26435 publications have been published within this topic receiving 500189 citations. The topic is also known as: symmetry (physics) & physical symmetry.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, all possible scaling IR asymptotics in homogeneous, translation invariant holographic phases preserving or breaking a U(1) symmetry in the IR are classified, and the generic global IR picture emerging is that of quantum critical lines, separated by quantum critical points which correspond to the scale invariant solutions with a constant scalar.
Abstract: All possible scaling IR asymptotics in homogeneous, translation invariant holographic phases preserving or breaking a U(1) symmetry in the IR are classified. Scale invariant geometries where the scalar extremizes its effective potential are distinguished from hyperscaling violating geometries where the scalar runs logarithmically. It is shown that the general critical saddle-point solutions are characterized by three critical exponents ($\theta, z, \zeta$). Both exact solutions as well as leading behaviors are exhibited. Using them, neutral or charged geometries realizing both fractionalized or cohesive phases are found. The generic global IR picture emerging is that of quantum critical lines, separated by quantum critical points which correspond to the scale invariant solutions with a constant scalar.

109 citations

Journal ArticleDOI
TL;DR: In this paper, a superstring-inspired supersymmetric model with a low energy extra U(1) symmetry was studied and a rather wide parameter region was found to have the favorable feature for the radiative symmetry breaking at weak scale.
Abstract: Radiative symmetry breaking is studied in a superstring-inspired supersymmetric model which is extended with a low energy extra U(1) symmetry. In this model the μ problem is radiatively solved in an automatic way. The right-handed neutrino can be heavy and the seesaw mechanism will produce the small neutrino mass which makes the MSW solution applicable to the solar neutrino problem. We search a parameter region which has the favorable feature for the radiative symmetry breaking at the weak scale. A rather wide parameter region is found to be allowed. Although there are certain dependences on the soft supersymmetry breaking parameters in the estimation of masses of various fields, the upper bound of the extra Z boson mass is estimated to be mZ2≤2000 GeV for a top mass range 150 GeV≤mt≤190 GeV within a suitable parameter region (m0<1 TeV and m1/2<200 GeV). Some phenomenological features of the extra Z boson are also presented.

108 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a model for the superconducting states of UPt3 in which a two-dimensional order parameter couples to a field that breaks the hexagonal symmetry of the crystal.
Abstract: The authors present a model for the superconducting states of UPt3 in which a two-dimensional order parameter couples to a field that breaks the hexagonal symmetry of the crystal. This symmetry-breaking field (SBF) splits the superconducting transition, leading to two superconducting phases in zero field. The high-temperature superconducting phase exhibits the broken hexagonal symmetry of the SBF, while the low-temperature phase spontaneously breaks time-reversal symmetry. The authors calculate the specific heat jumps at both transitions and compare with the recent measurements by Fisher et al. They find that sizeable strong-coupling corrections are needed to explain the magnitude of the heat capacity jumps and the splitting of the transition. They show that a kink in the upper critical field occurs for fields in the basal plane. Comparison of the discontinuity in the slope of Hc2(T) with the data of Taillefer et al. (on a different UPt3 crystal) is in qualitative agreement with the heat capacity data. They also predict a change in slope of Hcl(T) at the temperature of the second peak in the heat capacity, for all field orientations. Observation of all three features in the same single crystal would provide convincing evidence for unconventional pairing in UPt3 and would be a stringent test of the model presented.

108 citations

Journal ArticleDOI
TL;DR: In this paper, the authors construct explicit examples of conformal Carrollian field theories as limits of relativistic conformal theories, which include Carrollian versions of scalars, fermions, electromagnetism, Yang-Mills theory and general gauge theories coupled to matter fields.
Abstract: Conformal Carrollian groups are known to be isomorphic to Bondi-Metzner-Sachs (BMS) groups that arise as the asymptotic symmetries at the null boundary of Minkowski spacetime. The Carrollian algebra is obtained from the Poincare algebra by taking the speed of light to zero, and the conformal version similarly follows. In this paper, we construct explicit examples of Conformal Carrollian field theories as limits of relativistic conformal theories, which include Carrollian versions of scalars, fermions, electromagnetism, Yang-Mills theory and general gauge theories coupled to matter fields. Due to the isomorphism with BMS symmetries, these field theories form prototypical examples of holographic duals to gravitational theories in asymptotically flat spacetimes. The intricacies of the limiting procedure leads to a plethora of different Carrollian sectors in the gauge theories we consider. Concentrating on the equations of motion of these theories, we show that even in dimensions d = 4, there is an infinite enhancement of the underlying symmetry structure. Our analysis is general enough to suggest that this infinite enhancement is a generic feature of the ultra-relativistic limit that we consider.

108 citations


Network Information
Related Topics (5)
Supersymmetry
29.7K papers, 1.1M citations
86% related
Gauge theory
38.7K papers, 1.2M citations
86% related
General relativity
29K papers, 810.8K citations
85% related
Higgs boson
33.6K papers, 961.7K citations
84% related
Gravitation
29.3K papers, 821.5K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202217
20211,679
20201,178
20191,006
20181,040
2017939