scispace - formally typeset
Search or ask a question
Topic

Symmetry (physics)

About: Symmetry (physics) is a research topic. Over the lifetime, 26435 publications have been published within this topic receiving 500189 citations. The topic is also known as: symmetry (physics) & physical symmetry.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, Baierlein et al. give a derivation of general relativity (GR) and the gauge principle that is novel in presupposing neither spacetime nor the relativity principle.
Abstract: We give a derivation of general relativity (GR) and the gauge principle that is novel in presupposing neither spacetime nor the relativity principle. We consider a class of actions defined on superspace (the space of Riemannian 3-geometries on a given bare manifold). It has two key properties. The first is symmetry under 3-diffeomorphisms. This is the only postulated symmetry, and it leads to a constraint linear in the canonical momenta. The second property is that the Lagrangian is constructed from a 'local' square root of an expression quadratic in the velocities. The square root is 'local' because it is taken before integration over 3-space. It gives rise to quadratic constraints that do not correspond to any symmetry and are not, in general, propagated by the Euler–Lagrange equations. Therefore these actions are internally inconsistent. However, one action of this form is well behaved: the Baierlein–Sharp–Wheeler (Baierlein R F, Sharp D and Wheeler J A 1962 Phys. Rev. 126 1864) reparametrization-invariant action for GR. From this viewpoint, spacetime symmetry is emergent. It appears as a 'hidden' symmetry in the (underdetermined) solutions of the Euler–Lagrange equations, without being manifestly coded into the action itself. In addition, propagation of the linear diffeomorphism constraint together with the quadratic square-root constraint acts as a striking selection mechanism beyond pure gravity. If a scalar field is included in the configuration space, it must have the same characteristic speed as gravity. Thus Einstein causality emerges. Finally, self-consistency requires that any 3-vector field must satisfy Einstein causality, the equivalence principle and, in addition, the Gauss constraint. Therefore we recover the standard (massless) Maxwell equations.

158 citations

Journal ArticleDOI
TL;DR: In this paper, a unified description of the exponential growth and ballistic butterfly spreading of OTOCs across different systems using a newly formulated "quantum hydrodynamics", which is valid at finite ℏ and to all orders in derivatives.
Abstract: Recent studies of out-of-time ordered thermal correlation functions (OTOC) in holographic systems and in solvable models such as the Sachdev-Ye-Kitaev (SYK) model have yielded new insights into manifestations of many-body chaos. So far the chaotic behavior has been obtained through explicit calculations in specific models. In this paper we propose a unified description of the exponential growth and ballistic butterfly spreading of OTOCs across different systems using a newly formulated “quantum hydrodynamics,” which is valid at finite ℏ and to all orders in derivatives. The scrambling of a generic few-body operator in a chaotic system is described as building up a “hydrodynamic cloud,” and the exponential growth of the cloud arises from a shift symmetry of the hydrodynamic action. The shift symmetry also shields correlation functions of the energy density and flux, and time ordered correlation functions of generic operators from exponential growth, while leads to chaotic behavior in OTOCs. The theory also predicts an interesting phenomenon of the skipping of a pole at special values of complex frequency and momentum in two-point functions of energy density and flux. This pole-skipping phenomenon may be considered as a “smoking gun” for the hydrodynamic origin of the chaotic mode. We also discuss the possibility that such a hydrodynamic description could be a hallmark of maximally chaotic systems.

158 citations

Journal ArticleDOI
06 Jan 2020
TL;DR: In this article, the notion of generalized 't Hooft anomalies was extended to include scalar background fields, which can be described as an object in (generalized) differential cohomology, and their applications in simple pedagogical examples in one dimension (quantum mechanics) and in some two, three and four-dimensional quantum field theories.
Abstract: It is customary to couple a quantum system to external classical fields. One application is to couple the global symmetries of the system (including the Poincar\'{e} symmetry) to background gauge fields (and a metric for the Poincar\'{e} symmetry). Failure of gauge invariance of the partition function under gauge transformations of these fields reflects 't Hooft anomalies. It is also common to view the ordinary (scalar) coupling constants as background fields, i.e. to study the theory when they are spacetime dependent. We will show that the notion of 't Hooft anomalies can be extended naturally to include these scalar background fields. Just as ordinary 't Hooft anomalies allow us to deduce dynamical consequences about the phases of the theory and its defects, the same is true for these generalized 't Hooft anomalies. Specifically, since the coupling constants vary, we can learn that certain phase transitions must be present. We will demonstrate these anomalies and their applications in simple pedagogical examples in one dimension (quantum mechanics) and in some two, three, and four-dimensional quantum field theories. An anomaly is an example of an invertible field theory, which can be described as an object in (generalized) differential cohomology. We give an introduction to this perspective. Also, we use Quillen's superconnections to derive the anomaly for a free spinor field with variable mass. In a companion paper we will study four-dimensional gauge theories showing how our view unifies and extends many recently obtained results.

158 citations

Book ChapterDOI
28 Jun 1998
TL;DR: It is proved that the orbit problem is equivalent to an important problem in computational group theory which is at least as hard as the graph isomorphism but not known to be NP-complete.
Abstract: The use of symmetry to alleviate state-explosion problems during model-checking has become a important research topic. This paper investigates several problems which are important to techniques exploiting symmetry. The most important of these problems is the orbit problem. We prove that the orbit problem is equivalent to an important problem in computational group theory which is at least as hard as the graph isomorphism but not known to be NP-complete. This paper also shows classes of commonly occurring groups for which the orbit problem is easy. Some methods of deriving symmetry for a shared variable model of concurrent programs are also investigated. Experimental results providing evidence of reduction in state space by using symmetry are also provided.

158 citations


Network Information
Related Topics (5)
Supersymmetry
29.7K papers, 1.1M citations
86% related
Gauge theory
38.7K papers, 1.2M citations
86% related
General relativity
29K papers, 810.8K citations
85% related
Higgs boson
33.6K papers, 961.7K citations
84% related
Gravitation
29.3K papers, 821.5K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202217
20211,679
20201,178
20191,006
20181,040
2017939