scispace - formally typeset
Search or ask a question

Showing papers on "Synchrotron radiation published in 2011"


Book
22 Aug 2011
TL;DR: An Introduction to Synchrotron Radiation as mentioned in this paper offers a guide to the basic concepts of the generation and manipulation of synchroron light, its interaction with matter, and the application in x-ray scattering, spectroscopy and imaging.
Abstract: Synchrotron light is recognized as an invaluable research tool by a broad spectrum of scientists, ranging from physicists to biologists and archaeologists. The comprehensively revised second edition of An Introduction to Synchrotron Radiation offers a guide to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter and the application of synchrotron light in x-ray scattering, spectroscopy, and imaging.

220 citations


Journal ArticleDOI
TL;DR: In this article, the influence of inverse Compton (IC) and adiabatic cooling on the low energy slope was quantified to understand whether these processes can reconcile the observed slopes with a synchrotron origin.
Abstract: Context. Gamma-ray burst emission in the prompt phase is often interpreted as synchrotron radiation from high-energy electrons accelerated in internal shocks. Fast synchrotron cooling of a power-law distribution of electrons leads to the prediction that the slope below the spectral peak has a photon index α = −3/ 2( N(E) ∝ E α ). However, this differs significantly from the observed median value α ≈− 1. This discrepancy has been used to argue against this scenario. Aims. We quantify the influence of inverse Compton (IC) and adiabatic cooling on the low energy slope to understand whether these processes can reconcile the observed slopes with a synchrotron origin. Methods. We use a time-dependent code developed to calculate the GRB prompt emission within the internal shock model. The code follows both the shock dynamics and electron energy losses and can be used to generate lightcurves and spectra. We investigate the dependence of the low-energy slope on the parameters of the model and identify parameter regions that lead to values α> −3/2. Results. Values of α between −3/ 2a nd−1 are reached when electrons suffer IC losses in the Klein-Nishina regime. This does not necessarily imply a strong IC component in the Fermi/LAT range (GeV) because scatterings are only moderately efficient. Steep slopes require that a large fraction (10−30%) of the dissipated energy is given to a small fraction ( 50%) when adiabatic cooling is comparable with radiative cooling (marginally fast cooling). This requires collisions at small radii and/or with low magnetic fields. Conclusions. Amending the standard fast cooling scenario to account for IC cooling naturally leads to values α up to −1. Marginally fast cooling may also account for values of α up to −2/3, although the conditions required are more difficult to reach. About 20% of GRBs show spectra with slopes α> −2/3. Other effects, not investigated here, such as a thermal component in the electron distribution or pair production by high-energy gamma-ray photons may further affect α. Still, the majority of observed GRB prompt spectra can be reconciled with a synchrotron origin, constraining the microphysics of mildly relativistic internal shocks.

211 citations


Journal ArticleDOI
TL;DR: In this paper, the authors exploit synchrotron radiation to constrain the low-energy interstellar electron spectrum, using various radio surveys and connecting with electron data from Fermi-LAT and other experiments.
Abstract: Aims. We exploit synchrotron radiation to constrain the low-energy interstellar electron spectrum, using various radio surveys and connecting with electron data from Fermi-LAT and other experiments. Methods. The GALPROP programme for cosmic-ray propagation, gamma-ray and synchrotron radiation is used. Secondary electrons and positrons are included. Propagation models based on cosmic-ray and gamma-ray data are tested against synchrotron data from 22 MHz to 94 GHz. Results. The synchrotron data confirm the need for a low-energy break in the cosmic-ray electron injection spectrum. The interstellar spectrum below a few GeV has to be lower than standard models predict, and this suggests less solar modulation than usually assumed. Reacceleration models are more difficult to reconcile with the synchrotron constraints. We show that secondary leptons are important for the interpretation of synchrotron emission. We also consider a cosmic-ray propagation origin for the low-energy break. Conclusions. Exploiting the complementary information on cosmic rays and synchrotron gives unique and essential constraints on electrons, and has implications for gamma rays. This connection is especially relevant now in view of the ongoing Planck and Fermi missions.

199 citations


Journal ArticleDOI
TL;DR: In this article, the authors regress the fundamental plane with a Bayesian technique and show that sub-Eddington black holes emit X-ray emission that is predominantly optically thin synchrotron radiation from the jet, provided that their radio spectra are flat or inverted.
Abstract: The fundamental plane of black hole activity is a relation between X-ray luminosity, radio luminosity, and black hole mass for hard state Galactic black holes and their supermassive analogs. The fundamental plane suggests that, at low-accretion rates, the physical processes regulating the conversion of an accretion flow into radiative energy could be universal across the entire black hole mass scale. However, there is still a need to further refine the fundamental plane in order to better discern the radiative processes and their geometry very close to the black hole, in particular the source of hard X-rays. Further refinement is necessary because error bars on the best-fit slopes of the fundamental plane are generally large, and also the inferred coefficients can be sensitive to the adopted sample of black holes. In this work, we regress the fundamental plane with a Bayesian technique. Our approach shows that sub-Eddington black holes emit X-ray emission that is predominantly optically thin synchrotron radiation from the jet, provided that their radio spectra are flat or inverted. X-ray emission dominated by very radiatively inefficient accretion flows are excluded at the >3\sigma\ level. We also show that it is difficult to place FR I galaxies onto the fundamental plane because their X-ray jet emission is highly affected by synchrotron cooling. On the other hand, BL Lac objects fit onto the fundamental plane. Including a uniform subset of high-energy peaked BL Lac objects from the SDSS, we find sub-Eddington black holes with flat/inverted radio spectra follow log L_x=(1.45\pm0.04)log L_R-(0.88\pm0.06)\logM_{BH}-6.07\pm1.10, with \sigma_{int}=0.07\pm0.05 dex. Finally, we discuss how the effects of synchrotron cooling of jet emission from the highest black hole masses can bias fundamental plane regressions, perhaps leading to incorrect inferences on X-ray radiation mechanisms.

188 citations


Journal ArticleDOI
TL;DR: In this paper, a linear electric accelerator operating at magnetic reconnection sites was proposed to circumvent the difficulty of particle acceleration in the presence of small-scale turbulent structures in the reconnection layer and is controlled only by large-scale fields.
Abstract: The recent discovery of day-long gamma-ray flares in the Crab Nebula, presumed to be synchrotron emission by PeV (1015 eV) electrons in milligauss magnetic fields, presents a strong challenge to particle acceleration models. The observed photon energies exceed the upper limit (~100 MeV) obtained by balancing the acceleration rate and synchrotron radiation losses under standard conditions where the electric field is smaller than the magnetic field. We argue that a linear electric accelerator, operating at magnetic reconnection sites, is able to circumvent this difficulty. Sufficiently energetic electrons have gyroradii so large that their motion is insensitive to small-scale turbulent structures in the reconnection layer and is controlled only by large-scale fields. We show that such particles are guided into the reconnection layer by the reversing magnetic field as they are accelerated by the reconnection electric field. As these electrons become confined within the current sheet, they experience a decreasing perpendicular magnetic field that may drop below the accelerating electric field. This enables them to reach higher energies before suffering radiation losses and hence to emit synchrotron radiation in excess of the 100 MeV limit, providing a natural resolution to the Crab gamma-ray flare paradox.

156 citations


Journal ArticleDOI
TL;DR: The detection of the black hole binary GX 339-4 with the Wide-field Infrared Survey Explorer (WISE) during a very bright, hard accretion state in 2010 is reported, finding clear spectral curvature in the infrared, associated with the peak flux density expected from the compact jet.
Abstract: Many X-ray binaries remain undetected in the mid-infrared, a regime where emission from their compact jets is likely to dominate. Here, we report the detection of the black hole binary GX 339-4 with the Wide-field Infrared Survey Explorer (WISE) during a very bright, hard accretion state in 2010. Combined with a rich contemporaneous multiwavelength dataset, clear spectral curvature is found in the infrared, associated with the peak flux density expected from the compact jet. An optically-thin slope of ~-0.7 and a jet radiative power of >6x10^{35} erg/s (d/8 kpc)^2 are measured. A ~24 h WISE light curve shows dramatic variations in mid-infrared spectral slope on timescales at least as short as the satellite orbital period ~95 mins. There is also significant change during one pair of observations spaced by only 11 s. These variations imply that the spectral break associated with the transition from self-absorbed to optically-thin jet synchrotron radiation must be varying across the full wavelength range of ~3-22 microns that WISE is sensitive to, and more. Based on four-band simultaneous mid-infrared detections, the break lies at ~5x10^{13} Hz in at least two epochs of observation, consistent with a magnetic field B~1.5x10^4 G assuming a single-zone synchrotron emission region. The observed variability implies that either B, or the size of the acceleration zone above the jet base, are being modulated by factors of ~10 on relatively-short timescales.

139 citations


Journal ArticleDOI
TL;DR: Kneip et al. as discussed by the authors used a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale.
Abstract: We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

125 citations


Journal ArticleDOI
TL;DR: The Q/U Imaging ExperimenT (QUIET) as discussed by the authors employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropic in the polarization of the cosmic microwave background (CMB).
Abstract: The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ≈1000 deg^2. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 μK√s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range l = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35^(+1.06)_(–0.87). The combination of a new time-stream "double-demodulation" technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1.

125 citations


Journal ArticleDOI
TL;DR: In this paper, the authors derived signatures of synchrotron radiation from state-of-theart simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field.
Abstract: The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (asmore » predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.« less

114 citations


Journal ArticleDOI
TL;DR: In a systematic and direct experimental demonstration of reduced radiation damage in protein crystals with small beams, damage was measured as a function of micron-sized X-ray beams of decreasing dimensions and is less anisotropic than photoelectrons emission probability, consistent with photoelectron trajectory simulations.
Abstract: Radiation damage is a major limitation in crystallography of biological macromolecules, even for cryocooled samples, and is particularly acute in microdiffraction. For the X-ray energies most commonly used for protein crystallography at synchrotron sources, photoelectrons are the predominant source of radiation damage. If the beam size is small relative to the photoelectron path length, then the photoelectron may escape the beam footprint, resulting in less damage in the illuminated volume. Thus, it may be possible to exploit this phenomenon to reduce radiation-induced damage during data measurement for techniques such as diffraction, spectroscopy, and imaging that use X-rays to probe both crystalline and noncrystalline biological samples. In a systematic and direct experimental demonstration of reduced radiation damage in protein crystals with small beams, damage was measured as a function of micron-sized X-ray beams of decreasing dimensions. The damage rate normalized for dose was reduced by a factor of three from the largest (15.6 μm) to the smallest (0.84 μm) X-ray beam used. Radiation-induced damage to protein crystals was also mapped parallel and perpendicular to the polarization direction of an incident 1-μm X-ray beam. Damage was greatest at the beam center and decreased monotonically to zero at a distance of about 4 μm, establishing the range of photoelectrons. The observed damage is less anisotropic than photoelectron emission probability, consistent with photoelectron trajectory simulations. These experimental results provide the basis for data collection protocols to mitigate with micron-sized X-ray beams the effects of radiation damage.

114 citations


Journal ArticleDOI
TL;DR: In this paper, a linear electric accelerator operating at magnetic reconnection sites was proposed to circumvent the difficulty of particle acceleration in the Crab gamma-ray flare paradox, where the observed photon energies exceed the upper limit of 100 MeV.
Abstract: The recent discovery of day-long gamma-ray flares in the Crab Nebula, presumed to be synchrotron emission by PeV (10^{15} eV) electrons in milligauss magnetic fields, presents a strong challenge to particle acceleration models. The observed photon energies exceed the upper limit (~100 MeV) obtained by balancing the acceleration rate and synchrotron radiation losses under standard conditions where the electric field is smaller than the magnetic field. We argue that a linear electric accelerator, operating at magnetic reconnection sites, is able to circumvent this difficulty. Sufficiently energetic electrons have gyroradii so large that their motion is insensitive to small-scale turbulent structures in the reconnection layer and is controlled only by large-scale fields. We show that such particles are guided into the reconnection layer by the reversing magnetic field as they are accelerated by the reconnection electric field. As these electrons become confined within the current sheet, they experience a decreasing perpendicular magnetic field that may drop below the accelerating electric field. This enables them to reach higher energies before suffering radiation losses and hence to emit synchrotron radiation in excess of the 100 MeV limit, providing a natural resolution to the Crab gamma-ray flare paradox.

Journal ArticleDOI
TL;DR: It is demonstrated, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high-quality phase contrast image of a complex object, located in air, can be obtained with a single laser shot.
Abstract: Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high-quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 μm and produces a synchrotron spectrum with critical energy Ec=12.3±2.5 keV and 109 photons per shot in the whole spectrum.

Journal ArticleDOI
TL;DR: The ESPRESSO machine, combination of quick energy-band dispersion measurement and Fermi surface mapping by two-dimensional electron detector for the spin integrated ARPES and the high-efficient spin analysis by the efficient spin detector realizes the comprehensive investigation of spin electronic structure of materials.
Abstract: Highly efficient spin- and angle-resolved photoelectron spectrometer named ESPRESSO (Efficient SPin REsolved SpectroScopy Observation) machine has been developed at the beamline BL-9B in Hiroshima Synchrotron Radiation Center. Combination of high-resolution hemispherical electron analyzer and the high-efficient spin detector based on very low energy electron diffraction by the ferromagnetic target makes the high-energy resolution and angular resolution compatible with spin- and angle-resolved photoemission (SARPES) measurement. 7.5 meV in energy and ±0.18° in angular resolution have been achieved with spin resolution. The ESPRESSO machine, combination of quick energy-band dispersion measurement and Fermi surface mapping by two-dimensional electron detector for the spin integrated ARPES and the high-efficient spin analysis by the efficient spin detector realizes the comprehensive investigation of spin electronic structure of materials.

Journal ArticleDOI
TL;DR: In this paper, the authors derived signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field.
Abstract: The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate depolarization and the detectability of a lambda^2-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles which could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bi-modality in polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint to the spin direction of the central engine.

Journal ArticleDOI
TL;DR: Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional imaging of flat, laterally extended objects and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.
Abstract: Hard x rays from a synchrotron source are used in this implementation of computed laminography for three-dimensional (3D) imaging of flat, laterally extended objects. Due to outstanding properties of synchrotron light, high spatial resolution down to the micrometer scale can be attained, even for specimens having lateral dimensions of several decimeters. Operating either with a monochromatic or with a white synchrotron beam, the method can be optimized to attain high sensitivity or considerable inspection throughput in synchrotron user and small-batch industrial experiments. The article describes the details of experimental setups, alignment procedures, and the underlying reconstruction principles. Imaging of interconnections in flip-chip and wire-bonded devices illustrates the peculiarities of the method compared to its alternatives and demonstrates the wide application potential for the 3D inspection and quality assessment in microsystem technology.

Journal ArticleDOI
TL;DR: In this paper, angle-resolved photoemission spectroscopy (ARPES) was used to image the electronic structure of epitaxial graphene near the (K) over bar point.
Abstract: We have used s- and p-polarized synchrotron radiation to image the electronic structure of epitaxial graphene near the (K) over bar point by angle-resolved photoemission spectroscopy (ARPES). Part of the experimental Fermi surface is suppressed due to the interference of photoelectrons emitted from the two equivalent carbon atoms per unit cell of graphene's honeycomb lattice. Here we show that, by rotating the polarization vector, we are able to illuminate this dark corridor giving access to the complete experimental Fermi surface. Our measurements are supported by first-principles photoemission calculations, which reveal that the observed effect persists in the low-photon-energy regime.

Journal ArticleDOI
TL;DR: The complete generality of the method for calculating the radiated field from charged particle acceleration is demonstrated, and it is shown how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits.
Abstract: We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rathermore » than coherent Vavilov-Cherenkov radiation.« less

Journal ArticleDOI
TL;DR: A white beam microdiffraction setup has been developed on the bending magnet source BM32 at the European Synchrotron Radiation Facility that allows routine submicrometer beam diffraction to perform orientation and strain mapping of polycrystalline samples.
Abstract: A white beam microdiffraction setup has been developed on the bending magnet source BM32 at the European Synchrotron Radiation Facility. The instrument allows routine submicrometer beam diffraction to perform orientation and strain mapping of polycrystalline samples. The setup features large source to optics distances allowing large demagnification ratios and small beam sizes. The optics of the beamline is used for beam conditioning upstream a secondary source, suppressing any possible interference of beam conditioning on beam size and position. The setup has been designed for an easy and efficient operation with position control tools embedded on the sample stage, a high magnification large aperture optical microscope, and fast readout detectors. Switching from the white beam mode to the monochromatic mode is made easy by an automatic procedure and allows the determination of both the deviatoric and hydrostatic strain tensors.

Journal ArticleDOI
TL;DR: The Metrology Light Source is a recently constructed 630 MeV electron storage ring, operating as a synchrotron radiation source for the THz to extreme UV spectral range as discussed by the authors.
Abstract: The Metrology Light Source is a recently constructed 630 MeV electron storage ring, operating as a synchrotron radiation source for the THz to extreme UV spectral range. It is the first storage ring optimized for generating intense, broadband, coherent THz radiation, based on a bunch shortening mode. Stable (``steady state'') or bursting THz radiation up to an average power of about 60 mW can be obtained. The applied machine operation mode is achieved by manipulating the momentum compaction factor $\ensuremath{\alpha}$ by a novel tuning scheme. The underlying low-$\ensuremath{\alpha}$ scheme is of general interest for operating a storage ring in a short bunch mode and is the main subject of this paper.

Journal ArticleDOI
TL;DR: A design is presented for a cryogenically stabilized monochromator for 10–40 keV synchrotron radiation that uses six crystal reflections to achieve a meV-bandpass with high efficiency.
Abstract: An in-line monochromatization scheme suitable for 10–40 keV synchrotron radiation is presented based on the use of six crystal reflections that achieves meV and sub-meV bandwidths with high efficiency. The theoretical spectral efficiency surpasses all previous multicrystal designs and approaches that of single room-temperature back-reflecting crystals. This article presents the designs of two such devices along with their theoretical and measured performances.

Journal ArticleDOI
TL;DR: In this article, the authors present multi-wavelength observations of the blazar 3C 454.3 from April 2008 to March 2010 to understand the connection among emissions at different frequencies and to derive information on the emitting jet.
Abstract: Context. The blazar 3C 454.3 is one of the most active sources from the radio to the γ -ray frequencies observed in the past few years.Aims. We present multiwavelength observations of this source from April 2008 to March 2010. The radio to optical data are mostly from the GASP-WEBT, UV and X-ray data from Swift, and γ -ray data from the AGILE and Fermi satellites. The aim is to understand the connection among emissions at different frequencies and to derive information on the emitting jet.Methods. Light curves in 18 bands were carefully assembled to study flux variability correlations. We improved the calibration of optical-UV data from the UVOT and OM instruments and estimated the Lyα flux to disentangle the contributions from different components in this spectral region.Results. The observations reveal prominent variability above 8 GHz. In the optical-UV band, the variability amplitude decreases with increasing frequency due to a steadier radiation from both a broad line region and an accretion disc. The optical flux reaches nearly the same levels in the 2008–2009 and 2009–2010 observing seasons; the mm one shows similar behaviour, whereas the γ and X-ray flux levels rise in the second period. Two prominent γ -ray flares in mid 2008 and late 2009 show a double-peaked structure, with a variable γ /optical flux ratio. The X-ray flux variations seem to follow the γ -ray and optical ones by about 0.5 and 1 d, respectively.Conclusions. We interpret the multifrequency behaviour in terms of an inhomogeneous curved jet, where synchrotron radiation of increasing wavelength is produced in progressively outer and wider jet regions, which can change their orientation in time. In particular, we assume that the long-term variability is due to this geometrical effect. By combining the optical and mm light curves to fit the γ and X-ray ones, we find that the γ (X-ray) emission may be explained by inverse-Comptonisation of synchrotron optical (IR) photons by their parent relativistic electrons (SSC process). A slight, variable misalignment between the synchrotron and Comptonisation zones would explain the increased γ and X-ray flux levels in 2009–2010, as well as the change in the γ /optical flux ratio during the outbursts peaks. The time delays of the X-ray flux changes after the γ , and optical ones are consistent with the proposed scenario.

Journal ArticleDOI
TL;DR: It is demonstrated that the ability to manipulate the polarization of synchrotron radiation can be exploited to enhance the capabilities of X-ray absorption near-edge structure (XANES) spectroscopy, to include linear dichroism effects.
Abstract: We demonstrate that the ability to manipulate the polarization of synchrotron radiation can be exploited to enhance the capabilities of X-ray absorption near-edge structure (XANES) spectroscopy, to include linear dichroism effects. By acquiring spectra at the same photon energies but different polarizations, and using a photoelectron emission spectromicroscope (PEEM), one can quantitatively determine the angular orientation of micro- and nanocrystals with a spatial resolution down to 10 nm. XANES-PEEM instruments are already present at most synchrotrons, hence these methods are readily available. The methods are demonstrated here on geologic calcite (CaCO3) and used to investigate the prismatic layer of a mollusk shell, Pinctada fucata. These XANES-PEEM data reveal multiply oriented nanocrystals within calcite prisms, previously thought to be monocrystalline. The subdivision into multiply oriented nanocrystals, spread by more than 50°, may explain the excellent mechanical properties of the prismatic layer, known for decades but never explained.

Journal ArticleDOI
TL;DR: In this article, the authors presented multi-wavelength observations of 3C 454.3 from April 2008 to March 2010, where the radio to optical data are mostly from the GASP-WEBT, UV and X-ray data from Swift, and gamma-ray from the AGILE and Fermi satellites.
Abstract: We present multiwavelength observations of 3C 454.3 from April 2008 to March 2010. The radio to optical data are mostly from the GASP-WEBT, UV and X-ray data from Swift, and gamma-ray data from the AGILE and Fermi satellites. We improved the calibration of optical-UV data from the UVOT and OM instruments and estimated the Lyalpha flux to disentangle the contributions from different components in this spectral region. The observations reveal prominent variability above 8 GHz. In the optical-UV band, the variability amplitude decreases with increasing frequency due to a steadier radiation from both a broad line region and an accretion disc. The optical flux reaches nearly the same levels in the 2008-2009 and 2009-2010 observing seasons; the mm one shows similar behaviour, whereas the gamma and X-ray flux levels rise in the second period. Two prominent gamma-ray flares in mid 2008 and late 2009 show a double-peaked structure, with a variable gamma/optical flux ratio. The X-ray flux variations seem to follow the gamma-ray and optical ones by about 0.5 and 1 d, respectively. We interpret the multifrequency behaviour in terms of an inhomogeneous curved jet, where synchrotron radiation of increasing wavelength is produced in progressively outer and wider jet regions, which can change their orientation in time. In particular, we assume that the long-term variability is due to this geometrical effect. By combining the optical and mm light curves to fit the gamma and X-ray ones, we find that the gamma (X-ray) emission may be explained by inverse-Comptonisation of synchrotron optical (IR) photons by their parent relativistic electrons (SSC process). A slight, variable misalignment between the synchrotron and Comptonisation zones would explain the increased gamma and X-ray flux levels in 2009-2010, as well as the change in the gamma/optical flux ratio during the outbursts peaks.

Journal ArticleDOI
TL;DR: In this paper, the x-ray induced Sm3+ → Sm2+ valence conversion in doped fluorophosphates glasses has been tested for use in xray dosimetry for microbeam radiation therapy.
Abstract: The measurement of spatially resolved high doses in microbeam radiation therapy has always been a challenging task, where a combination of high dose response and high spatial resolution (microns) is required for synchrotron radiation peaked around 50 keV. The x-ray induced Sm3+ → Sm2+ valence conversion in Sm3+ doped fluorophosphates glasses has been tested for use in x-ray dosimetry for microbeam radiation therapy. The conversion efficiency depends almost linearly on the dose of irradiation up to ∼5 Gy and saturates at doses exceeding ∼80 Gy. The conversion shows strong correlation with x-ray induced absorbance of the glass which is related to the formation of phosphorus-oxygen hole centers. When irradiated through a microslit collimator, a good spatial resolution and high “peak-to-valley” contrast have been observed by means of confocal photoluminescence microscopy.

Journal ArticleDOI
TL;DR: In this article, the use of radiography, tomography, diffraction, scattering, and absorption edge spectroscopy is demonstrated for in situ characterization of processes and compositions of energy conversion systems.
Abstract: Many materials used for energy conversion have a complex structure and chemical composition, knowledge of which is important for both understanding the function of materials and energy conversion systems and for their further development. Synchrotron radiation and neutrons can make an important contribution to understanding the function of such systems. Taking examples from the fields of fuel cells, gas separation membranes, batteries, solar cells, and catalysts, the use of radiography, tomography, diffraction, scattering, and absorption edge spectroscopy is demonstrated. The strength of such methods is the in situ characterization of processes and compositions, and so the focus is on these aspects.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a model to explain the broadband optical to the X-ray spectra and the variability properties of the cross-correlation functions observed in three black hole binaries exhibited a complicated shape.
Abstract: The physical picture of the emission mechanisms operating in the X-ray binaries was put under question by the simultaneous optical/X-ray observations with high time resolution. The light curves of the two energy bands appeared to be connected and the cross-correlation functions observed in three black hole binaries exhibited a complicated shape. They show a dip of the optical emission a few seconds before the X-ray peak and the optical flare just after the X-ray peak. This behavior could not be explained in terms of standard optical emission candidates (e.g., emission from the cold accretion disk or a jet). We propose a novel model, which explains the broadband optical to the X-ray spectra and the variability properties. We suggest that the optical emission consists of two components: synchrotron radiation from the non-thermal electrons in the hot accretion flow and the emission produced by reprocessing of the X-rays in the outer part of the accretion disk. The first component is anti-correlated with the X-rays, while the second one is correlated, but delayed and smeared relative to the X-rays. The interplay of the components explains the complex shape of the cross-correlation function, the features in the optical power spectral density as well as the time lags.

Journal ArticleDOI
TL;DR: In this paper, the authors used a fully automatized χ2-minimization procedure to model nine SED data sets with a one-zone synchrotron self-Compton (SSC) model and examined how the model parameters vary with source activity.
Abstract: For the high-frequency-peaked BL Lac object Mrk 421, we study the variation of the spectral energy distribution (SED) as a function of source activity, from quiescent to active. We use a fully automatized χ2-minimization procedure, instead of the "eyeball" procedure more commonly used in the literature, to model nine SED data sets with a one-zone synchrotron self-Compton (SSC) model and examine how the model parameters vary with source activity. The latter issue can finally be addressed now, because simultaneous broadband SEDs (spanning from optical to very high energy photon) have finally become available. Our results suggest that in Mrk 421 the magnetic field (B) decreases with source activity, whereas the electron spectrum's break energy (γbr) and the Doppler factor (δ) increase—the other SSC parameters turn out to be uncorrelated with source activity. In the SSC framework, these results are interpreted in a picture where the synchrotron power and peak frequency remain constant with varying source activity, through a combination of decreasing magnetic field and increasing number density of γ ≤ γbr electrons: since this leads to an increased electron-photon scattering efficiency, the resulting Compton power increases, and so does the total (= synchrotron plus Compton) emission.

Journal ArticleDOI
TL;DR: In this article, the elastic modulus of the crystalline region along the fiber axis (El) and the thermal expansion coefficients (TECs) of α-chitin were measured using synchrotron X-ray diffraction.

Journal ArticleDOI
TL;DR: The usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source, guaranteeing the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SoLEIL pulse width.
Abstract: Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump–probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera-based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photoemitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump–probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station.

Journal ArticleDOI
TL;DR: A velocity map imaging/ion time-of-flight spectrometer designed specifically for pump-probe experiments combining synchrotron and laser radiations is described.
Abstract: A velocity map imaging/ion time-of-flight spectrometer designed specifically for pump-probe experiments combining synchrotron and laser radiations is described. The in-house built delay line detector can be used in two modes: the high spatial resolution mode and the coincidence mode. In the high spatial resolution mode a kinetic energy resolution of 6% has been achieved. The coincidence mode can be used to improve signal-to-noise ratio for the pump-probe experiments either by using a gate to count electrons only when the laser is present or by recording coincidences with the ion formed in the ionization process.