scispace - formally typeset
Search or ask a question
Topic

Synchrotron radiation

About: Synchrotron radiation is a research topic. Over the lifetime, 14639 publications have been published within this topic receiving 244775 citations. The topic is also known as: magnetobremsstrahlung radiation & Synchrotron Radiation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors calculate the energy loss due to synchrotron radiation of gluons by fast quarks in strong magnetic field produced by colliding relativistic heavy ions.
Abstract: We study the synchrotron radiation of gluons by fast quarks in strong magnetic field produced by colliding relativistic heavy ions. We argue that due to high electric conductivity of plasma, the magnetic field is almost constant during the entire plasma lifetime. We calculate the energy loss due to synchrotron radiation of gluons by fast quarks. We find that the typical energy loss per unit length for a light quark at the Large Hadron Collider is a few GeV per fm. This effect alone predicts quenching of jets with ${p}_{\ensuremath{\perp}}$ up to about 20 GeV. We also show that the spin-flip transition effect accompanying the synchrotron radiation leads to a strong polarization of quarks and leptons with respect to the direction of the magnetic field. Observation of the lepton polarization may provide a direct evidence of existence of strong magnetic field in heavy-ion collisions.

133 citations

Journal ArticleDOI
18 Mar 2016-Science
TL;DR: The results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of 119Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H1S.
Abstract: High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin 119Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the 119Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of 119Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S.

132 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the evolution of the energy spectra of relativistic electrons under different assumptions about the acceleration and energy-loss rates of electrons, and the impact of these processes on the light curve of IC gamma-rays.
Abstract: The inverse Compton (IC) scattering of ultrarelativistic electrons accelerated at the pulsar wind termination shock is generally believed to be responsible for TeV gamma-ray signal recently reported from the binary system PSR B1259-63/SS2883. While this process can explain the energy spectrum of the observed TeV emission, the gamma-ray fluxes detected by the Array of Imaging Atmospheric Cherenkov Telescopes (HESS) at different epochs do not agree with the published theoretical predictions of the TeV light curve. The main objective of this paper is to show that the HESS results can be explained, under certain reasonable assumptions concerning the cooling of relativistic electrons, by IC scenarios of gamma-ray production in PSR B1259-63. In this paper we study evolution of the energy spectra of relativistic electrons under different assumptions about the acceleration and energy-loss rates of electrons, and the impact of these processes on the light curve of IC gamma-rays. We demonstrate that the observed TeV light curve can be explained (i) by adiabatic losses which dominate over the entire trajectory of the pulsar with a significant increase towards the periastron or (ii) by the 'early' (sub-TeV) cut-offs in the energy spectra of electrons due to the enhanced rate of Compton losses close to the periastron. The first four data points obtained just after periastron comprise an exception - possibly due to interaction with the Be star disc, which introduces additional physics not included in the presented model. The calculated spectral and temporal characteristics of the TeV radiation provide conclusive tests to distinguish between these two working hypotheses. The Compton deceleration of the electron-positron pulsar wind contributes to the decrease of the non-thermal power released in the accelerated electrons after the wind termination, and thus to the reduction of the IC and synchrotron components of radiation close to the periastron. Although this effect alone cannot explain the observed TeV and X-ray light curves, the Comptonization of the cold ultrarelativistic wind leads to the formation of gamma-radiation with a specific line-type energy spectrum. While the HESS data already constrain the Lorentz factor of the wind, Γ ≤ 10 6 (for the most likely orbit inclination angle i = 35°, and assuming an isotropic pulsar wind), future observations of this object with GLAST should allow a deep probe of the wind Lorentz factor in the range between 10 4 and 10 6 .

132 citations

Journal ArticleDOI
TL;DR: A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described, specifically designed for time-resolved applications of x- Ray emission spectroscopy and x-Ray Raman scattering at X-ray Free Electron Lasers and synchrotron radiation facilities.
Abstract: A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

131 citations


Network Information
Related Topics (5)
Electron
111.1K papers, 2.1M citations
90% related
Hydrogen
132.2K papers, 2.5M citations
86% related
Magnetic field
167.5K papers, 2.3M citations
86% related
Silicon
196K papers, 3M citations
85% related
Excited state
102.2K papers, 2.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023266
2022661
2021203
2020258
2019288
2018260