scispace - formally typeset
Search or ask a question
Topic

Systems design

About: Systems design is a research topic. Over the lifetime, 22890 publications have been published within this topic receiving 446483 citations.


Papers
More filters
Book
01 Feb 1975
TL;DR: An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.
Abstract: From the Publisher: IEEE Press is pleased to bring back into print this definitive text and reference covering all aspects of microwave mobile systems design. Encompassing ten years of advanced research in the field, this invaluable resource reviews basic microwave theory, explains how cellular systems work, and presents useful techniques for effective systems development. The return of this classic volume should be welcomed by all those seeking the original authoritative and complete source of information on this emerging technology. An in-depth and practical guide, Microwave Mobile Communications will provide you with a solid understanding of the microwave propagation techniques essential to the design of effective cellular systems.

9,064 citations

Book
01 Jan 1970
TL;DR: This comprehensive treatment of the analysis and design of continuous-time control systems provides a gradual development of control theory and shows how to solve all computational problems with MATLAB.
Abstract: From the Publisher: This comprehensive treatment of the analysis and design of continuous-time control systems provides a gradual development of control theory—and shows how to solve all computational problems with MATLAB. It avoids highly mathematical arguments, and features an abundance of examples and worked problems throughout the book. Chapter topics include the Laplace transform; mathematical modeling of mechanical systems, electrical systems, fluid systems, and thermal systems; transient and steady-state-response analyses, root-locus analysis and control systems design by the root-locus method; frequency-response analysis and control systems design by the frequency-response; two-degrees-of-freedom control; state space analysis of control systems and design of control systems in state space.

6,634 citations

Book
01 Jan 1990
TL;DR: This book discusses Object Modeling as a Design Technique, Object Diagram Compiler, and the Future of Object-Oriented Technology.
Abstract: 1. Introduction. I. MODELING CONCEPTS. 2. Modeling as a Design Technique. 3. Object Modeling. 4. Advanced Object Modeling. 5. Dynamic Modeling. 6. Functional Modeling. II. DESIGN METHODOLOGY. 7. Methodology Preview. 8. Analysis. 9. System Design. 10. Object Design. 11. Methodology Summary. 12. Comparison of Methodologies. III. IMPLEMENTATION. 13. From Design to Implementation. 14. Programming Style. 15. Object-Oriented Languages. 16. Non-Object-Oriented Languages. 17. Databases. 18. Object Diagram Compiler. 19. Computer Animation. 20. Electrical Distribution Design System. 21. Future of Object-Oriented Technology. Appendix A: OMT Graphical Notation. Appendix B: Glossary. Index.

5,408 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss modularization as a mechanism for improving the flexibility and comprehensibility of a system while allowing the shortening of its development time, and the effectiveness of modularization is dependent upon the criteria used in dividing the system into modules.
Abstract: This paper discusses modularization as a mechanism for improving the flexibility and comprehensibility of a system while allowing the shortening of its development time. The effectiveness of a “modularization” is dependent upon the criteria used in dividing the system into modules. A system design problem is presented and both a conventional and unconventional decomposition are described. It is shown that the unconventional decompositions have distinct advantages for the goals outlined. The criteria used in arriving at the decompositions are discussed. The unconventional decomposition, if implemented with the conventional assumption that a module consists of one or more subroutines, will be less efficient in most cases. An alternative approach to implementation which does not have this effect is sketched.

5,028 citations

Journal ArticleDOI
TL;DR: The main purpose is to update the designers and users of parallel numerical algorithms with the latest research in the field and present the novel ideas, results and work in progress and advancing state-of-the-art techniques in the area of parallel and distributed computing for numerical and computational optimization problems in scientific and engineering application.
Abstract: Edited by Tianruo Yang Kluwer Academic Publisher, Dordrech, Netherlands, 1999, 248 pp. ISBN 0-7923-8588-8, $135.00 This book contains a selection of contributed and invited papers presented and the workshop Frontiers of Parallel Numerical Computations and Applications, in the IEEE 7th Symposium on the Frontiers on Massively Parallel Computers (Frontiers '99) at Annapolis, Maryland, February 20-25, 1999. Its main purpose is to update the designers and users of parallel numerical algorithms with the latest research in the field. A broad spectrum of topics on parallel numerical computations, with applications to some of the more challenging engineering problems, is covered. Parallel algorithm designers and engineers who use extensively parallel numerical computations, as well as graduate students in Computer Science, Scientific Computing, various engineering fields and applied mathematics should benefit from reading it. The first part is addressed to a larger audience and presents papers on parallel numerical algorithms. Two new libraries are presented: PSPASSES and PoLAPACK. PSPASSES is a collection of parallel direct solvers, for sparse symmetric positive definite linear systems, which are characterized by high performance and good scalability. PoLAPACK library contains LU and QR codes based on a new blocking strategy that guarantees good performance regardless of the physical block size. Next, an efficient approach to solving stiff ordinary differential equations by diagonal implicitly iterated Runge-Kutta (DIIRK) method is described. DIIRK renders a fast parallel implementation due to a reduced number of function evaluation and an automatic stepsize control mechanism. Finally, minimization of sufficiently smooth non-linear functionals is sought via parallel space decomposition. Here, a theoretical background of the problem and two equivalent algorithms are presented. New research directions for classical solvers are treated in the next three papers: first, reduction of the global synchronization in the biconjugate gradient method, second, a new more efficient Jacobi ordering for the multiple-port hypercubes, and finally, an analysis of the theoretical performance of an improved version of the Quasi-minimal residual method. Parallel numerical applications constitute the second part of the book, with results from fluid mechanics, material sciences, applications to signal and image processing, dynamic systems, semiconductor technology and electronic circuits and systems design. With one exception, the authors expose in detail parallel implementations of the algorithms and numerical results. First, a 3D-elasticity problem is solved using an additive overlapping domain decomposition algorithm. Second, an overlapping mesh technique is used in a parallel solver for the compressible flow problem. Then, a parallel version of a complex numerical algorithm to solve a lubrication problem studied in tribology is introduced. Next, a timid approach to parallel computing of the cavity flow by the finite element method is presented. The problem solved is rather small for today's needs and only up to 6 processors are used. This is also the only paper that does not present results from numerical experiments. The remaining applications discussed in the subsequent chapters are: large scale multidisciplinary design optimization problem with application to the design of a supersonic commercial aircraft, a report on progress in parallel solution of an electromagnetic scattering problem using boundary integral methods and an optimal solution to the convection-diffusion equation modeling the concentration of a pollutant in the air. The book is of definite interest to readers who keep up-to-date with the parallel numerical computation research. The main purpose, to present the novel ideas, results and work in progress and advancing state-of-the-art techniques in the area of parallel and distributed computing for numerical and computational optimization problems in scientific and engineering application is clearly achieved. However, due to its content it cannot serve as a textbook for a computer science or engineering class. Overall, is a reference type book to be kept by specialists and in a library rather than a book to be purchased for self-introduction to the field. Most of the papers presented are results of ongoing research and so they rely heavily on previous results. On the other hand, with only one exception, the results presented in the papers are a great source of information for the researchers currently involved in the field. Michelle Pal, Los Alamos National Laboratory

4,696 citations


Network Information
Related Topics (5)
Software
130.5K papers, 2M citations
89% related
Information system
107.5K papers, 1.8M citations
83% related
Control theory
299.6K papers, 3.1M citations
83% related
Artificial neural network
207K papers, 4.5M citations
82% related
Optimization problem
96.4K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202242
2021443
2020523
2019624
2018616