scispace - formally typeset
Search or ask a question
Topic

T helper cell

About: T helper cell is a research topic. Over the lifetime, 2893 publications have been published within this topic receiving 201622 citations. The topic is also known as: CD4-Positive T-Lymphocyte & CD4-Positive T-Lymphocytes.


Papers
More filters
Journal ArticleDOI
TL;DR: Novel evidence is presented that conversion of naive peripheral CD4+CD25− T cells into anergic/suppressor cells that are CD25+, CD45RB−/low and intracellular CTLA-4+ can be achieved through costimulation with T cell receptors (TCRs) and transforming growth factor β (TGF-β).
Abstract: CD4+CD25+ regulatory T cells (Treg) are instrumental in the maintenance of immunological tolerance. One critical question is whether Treg can only be generated in the thymus or can differentiate from peripheral CD4+CD25− naive T cells. In this paper, we present novel evidence that conversion of naive peripheral CD4+CD25− T cells into anergic/suppressor cells that are CD25+, CD45RB−/low and intracellular CTLA-4+ can be achieved through costimulation with T cell receptors (TCRs) and transforming growth factor β (TGF-β). Although transcription factor Foxp3 has been shown recently to be associated with the development of Treg, the physiological inducers for Foxp3 gene expression remain a mystery. TGF-β induced Foxp3 gene expression in TCR-challenged CD4+CD25− naive T cells, which mediated their transition toward a regulatory T cell phenotype with potent immunosuppressive potential. These converted anergic/suppressor cells are not only unresponsive to TCR stimulation and produce neither T helper cell 1 nor T helper cell 2 cytokines but they also express TGF-β and inhibit normal T cell proliferation in vitro. More importantly, in an ovalbumin peptide TCR transgenic adoptive transfer model, TGF-β–converted transgenic CD4+CD25+ suppressor cells proliferated in response to immunization and inhibited antigen-specific naive CD4+ T cell expansion in vivo. Finally, in a murine asthma model, coadministration of these TGF-β–induced suppressor T cells prevented house dust mite–induced allergic pathogenesis in lungs.

4,669 citations

Journal ArticleDOI
TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Abstract: CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places ...

4,548 citations

Journal ArticleDOI
TL;DR: In vivo, antibody to IL- 17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused Chemokine production and leukocyte infiltration, indicating a unique T helper lineage that regulates tissue inflammation.
Abstract: Interleukin 17 (IL-17) has been linked to autoimmune diseases, although its regulation and function have remained unclear. Here we have evaluated in vitro and in vivo the requirements for the differentiation of naive CD4 T cells into effector T helper cells that produce IL-17. This process required the costimulatory molecules CD28 and ICOS but was independent of the cytokines and transcription factors required for T helper type 1 or type 2 differentiation. Furthermore, both IL-4 and interferon-γ negatively regulated T helper cell production of IL-17 in the effector phase. In vivo, antibody to IL-17 inhibited chemokine expression in the brain during experimental autoimmune encephalomyelitis, whereas overexpression of IL-17 in lung epithelium caused chemokine production and leukocyte infiltration. Thus, IL-17 expression characterizes a unique T helper lineage that regulates tissue inflammation.

4,196 citations

Journal ArticleDOI
TL;DR: Biochemical characterization, mAbs, and recombinant or purified cytokines showed that CSIF is distinct from IL-1,IL-2, IL-3, IFN-gamma, GM-CSF, TGF-beta, TNF, LT, and P40, and the potential role of CSIF in crossregulation of Th1 and Th2 responses is discussed.
Abstract: A cytokine synthesis inhibitory factor (CSIF) is secreted by Th2 clones in response to Con A or antigen stimulation, but is absent in supernatants from Con A-induced Th1 clones. CSIF can inhibit the production of IL-2, IL-3, lymphotoxin (LT)/TNF, IFN-gamma, and granulocyte-macrophage CSF (GM-CSF) by Th1 cells responding to antigen and APC, but Th2 cytokine synthesis is not significantly affected. Transforming growth factor beta (TGF-beta) also inhibits IFN-gamma production, although less effectively than CSIF, whereas IL-2 and IL-4 partially antagonize the activity of CSIF. CSIF inhibition of cytokine synthesis is not complete, since early cytokine synthesis (before 8 h) is not significantly affected, whereas later synthesis is strongly inhibited. In the presence of CSIF, IFN-gamma mRNA levels are reduced slightly at 8, and strongly at 12 h after stimulation. Inhibition of cytokine expression by CSIF is not due to a general reduction in Th1 cell viability, since actin mRNA levels were not reduced, and proliferation of antigen-stimulated cells in response to IL-2, was unaffected. Biochemical characterization, mAbs, and recombinant or purified cytokines showed that CSIF is distinct from IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IFN-gamma, GM-CSF, TGF-beta, TNF, LT, and P40. The potential role of CSIF in crossregulation of Th1 and Th2 responses is discussed.

2,847 citations

Journal ArticleDOI
26 Aug 1994-Science
TL;DR: Mucosally derived TH2-like clones induced by oral antigen can actively regulate immune responses in vivo and may represent a different subset of T cells.
Abstract: Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease that serves as an animal model for multiple sclerosis. Oral administration of myelin basic protein (MBP) suppresses EAE by inducing peripheral tolerance. T cell clones were isolated from the mesenteric lymph nodes of SJL mice that had been orally tolerized to MBP. These clones were CD4+ and were structurally identical to T helper cell type 1 (TH1) encephalitogenic CD4+ clones in T cell receptor usage, major histocompatibility complex restriction, and epitope recognition. However, they produced transforming growth factor-beta with various amounts of interleukin-4 and interleukin-10 and suppressed EAE induced with either MBP or proteolipid protein. Thus, mucosally derived TH2-like clones induced by oral antigen can actively regulate immune responses in vivo and may represent a different subset of T cells.

2,005 citations


Network Information
Related Topics (5)
T cell
109.5K papers, 5.5M citations
93% related
Immune system
182.8K papers, 7.9M citations
91% related
Antigen
170.2K papers, 6.9M citations
90% related
Cytokine
79.2K papers, 4.4M citations
90% related
Antibody
113.9K papers, 4.1M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202213
202194
202086
201992
201875