scispace - formally typeset
Search or ask a question
Topic

Taiga

About: Taiga is a research topic. Over the lifetime, 4295 publications have been published within this topic receiving 172469 citations. The topic is also known as: snow forest & boreal forest.


Papers
More filters
Journal ArticleDOI
08 Jun 2000-Nature
TL;DR: The data show that temperature-induced drought stress has disproportionately affected the most rapidly growing white spruce, suggesting that, under recent climate warming, drought may have been an important factor limiting carbon uptake in a large portion of the North American boreal forest.
Abstract: The extension of growing season at high northern latitudes seems increasingly clear from satellite observations of vegetation extent and duration1,2. This extension is also thought to explain the observed increase in amplitude of seasonal variations in atmospheric CO2 concentration. Increased plant respiration and photosynthesis both correlate well with increases in temperature this century and are therefore the most probable link between the vegetation and CO2 observations3. From these observations1,2, it has been suggested that increases in temperature have stimulated carbon uptake in high latitudes1,2 and for the boreal forest system as a whole4. Here we present multi-proxy tree-ring data (ring width, maximum late-wood density and carbon-isotope composition) from 20 productive stands of white spruce in the interior of Alaska. The tree-ring records show a strong and consistent relationship over the past 90 years and indicate that, in contrast with earlier predictions, radial growth has decreased with increasing temperature. Our data show that temperature-induced drought stress has disproportionately affected the most rapidly growing white spruce, suggesting that, under recent climate warming, drought may have been an important factor limiting carbon uptake in a large portion of the North American boreal forest. If this limitation in growth due to drought stress is sustained, the future capacity of northern latitudes to sequester carbon may be less than currently expected.

1,019 citations

Journal ArticleDOI
01 Oct 1992-Nature
TL;DR: In this article, the authors show that the boreal forest warms both winter and summer air temperatures, relative to simulations in which the forest is replaced with bare ground or tundra vegetation.
Abstract: TERRESTRIAL ecosystems are thought to play an important role in determining regional and global climate1–6; one example of this is in Amazonia, where destruction of the tropical rainforest leads to warmer and drier conditions4–6. Boreal forest ecosystems may also affect climate. As temperatures rise, the amount of continental and oceanic snow and ice is reduced, so the land and ocean surfaces absorb greater amounts of solar radiation, reinforcing the warming in a 'snow/ice/albedo' feedback which results in large climate sensitivity to radiative forcings7–9. This sensitivity is moderated, however, by the presence of trees in northern latitudes, which mask the high reflectance of snow10,11, leading to warmer winter temperatures than if trees were not present12–14. Here we present results from a global climate model which show that the boreal forest warms both winter and summer air temperatures, relative to simulations in which the forest is replaced with bare ground or tundra vegetation. Our results suggest that future redistributions of boreal forest and tundra vegetation (due, for example, to extensive logging, or the influence of global warming) could initiate important climate feedbacks, which could also extend to lower latitudes.

968 citations

Journal ArticleDOI
TL;DR: In this paper, a synthesis of the distribution of carbon (C) pools and fluxes in different forested ecosystems by age class for tropical, temperate, and boreal forest biomes is presented.
Abstract: Forest age, which is affected by stand-replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome-age class combination and the sources of variability are discussed. Aggregated biome-level estimates of NPP and NEP were higher in intermediate-aged forests (e.g., 30–120 years), while older forests (e.g., >120 years) were generally less productive. The mean NEP in the youngest forests (0–10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (−0.1 and –1.9 Mg C ha−1 yr−1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was −1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha−1 yr−1 across five age classes (0–10, 11–30, 31–70, 71–120, 121–200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha−1 yr−1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle.

872 citations

Journal ArticleDOI
TL;DR: In this article, the carbon balance of forests is determined by a number of component processes of carbon acquisition and carbon loss, and a small shift in the magnitude of these processes would have a large impact on the global carbon cycle.
Abstract: Forest biomes are major reserves for terrestrial carbon, and major components of global primary productivity. The carbon balance of forests is determined by a number of component processes of carbon acquisition and carbon loss, and a small shift in the magnitude of these processes would have a large impact on the global carbon cycle. In this paper, we discuss the climatic influences on the carbon dynamics of boreal, temperate and tropical forests by presenting a new synthesis of micrometeorological, ecophysiological and forestry data, concentrating on three case-study sites. Historical changes in the carbon balance of each biome are also reviewed, and the evidence for a carbon sink in each forest biome and its likely behaviour under future global change are discussed. We conclude that there have been significant advances in determining the carbon balance of forests, but there are still critical uncertainties remaining, particularly in the behaviour of soil carbon stocks.

815 citations


Network Information
Related Topics (5)
Vegetation
49.2K papers, 1.4M citations
88% related
Ecosystem
25.4K papers, 1.2M citations
83% related
Species diversity
32.2K papers, 1.2M citations
79% related
Species richness
61.6K papers, 2.1M citations
79% related
Soil water
97.8K papers, 2.9M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023404
2022850
2021205
2020205
2019190
2018205