scispace - formally typeset
Search or ask a question
Topic

Tartrate-resistant acid phosphatase

About: Tartrate-resistant acid phosphatase is a research topic. Over the lifetime, 1115 publications have been published within this topic receiving 45937 citations. The topic is also known as: HPAP & SPENCDI.


Papers
More filters
Journal ArticleDOI
TL;DR: Bajijiasu dose-dependently inhibited RANKL-induced osteoclast formation and bone resorption from 0.1 mM, and reached half maximal inhibitory effects (IC50) at 0.4 mM without toxicity, indicative of a potential effect of Bajijiau on osteolytic bone diseases.
Abstract: Pathological osteolysis is commonly associated with osteoporosis, bone tumors, osteonecrosis, and chronic inflammation. It involves excessive resorption of bone matrix by activated osteoclasts. Suppressing receptor activator of NF-κB ligand (RANKL) signaling pathways has been proposed to be a good target for inhibiting osteoclast differentiation and bone resorption. Bajijiasu—a natural compound derived from Morinda officinalis F. C. How—has previously been shown to have anti-oxidative stress property; however, its effect and molecular mechanism of action on osteoclastogenesis and bone resorption remains unclear. In the present study, we found that Bajijiasu dose-dependently inhibited RANKL-induced osteoclast formation and bone resorption from 0.1 mM, and reached half maximal inhibitory effects (IC50) at 0.4 mM without toxicity. Expression of RANKL-induced osteoclast specific marker genes including cathepsin K (Ctsk), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), tartrate resistant acid phosphatase (TRAcP), vacuolar-type H+-ATPase V0 subunit D2 (V-ATPase d2), and (matrix metalloproteinase-2 (MMP2) was inhibited by Bajijiasu treatment. Luciferase reporter gene studies showed that Bajijiasu could significantly reduce the expression and transcriptional activity of NFAT as well as RANKL-induced NF-κB activation in a dose-dependent manner. Further, Bajijiasu was found to decrease the RANKL-induced phosphorylation of extracellular signal-regulated kinases (ERK), inhibitor of κB-α (IκB-α), NFAT, and V-ATPase d2. Taken together, this study revealed Bajijiasu could attenuate osteoclast formation and bone resorption by mediating RANKL signaling pathways, indicative of a potential effect of Bajijiasu on osteolytic bone diseases.

26 citations

Journal ArticleDOI
TL;DR: It is suggested that MT1‐MMP is needed at the very beginning of osteocytogenesis and may additionally determine whether an osteoblast further differentiates into an osteocyte.
Abstract: Endochondral bone formation, the process by which most parts of our skeleton evolve, leads to the establishment of the diaphyseal primary (POC) and epiphyseal secondary ossification centre (SOC) in long bones. An essential event for the development of the SOC is the early generation of vascularized cartilage canals that requires the proteolytic cleavage of the cartilaginous matrix. This in turn will allow the canals to grow into the epiphysis. In the present study we therefore initially investigated which enzymes and types of cells are involved in this process. We have chosen the mouse as an animal model and focused our studies on the distal part of the femur during early stages after birth. The formation of the cartilage canals was promoted by tartrate-resistant acid phosphatase (TRAP) and membrane type-1 matrix metalloproteinases (MT1-MMP). In addition, macrophages and cells containing numerous lysosomes contributed to the establishment of the canals and enabled their further advancement into the epiphysis. As development continued, the SOC was formed, and in mice aged 10 days a distinct layer of type I collagen (= osteoid) was laid down onto the cartilage scaffold. The events leading to the establishment of the SOC were compared with those of the POC. Basically these processes were quite similar, and in both ossification centers, TRAP-positive chondroclasts resorbed the cartilage matrix. However, occasionally co-expression of TRAP and MT1-MMP was noted in a small subpopulation of this cell type. Furthermore, numerous osteoblasts expressed MT1-MMP from the start of endochondral ossification, whereas others did not. In osteocytogenesis, MT1-MMP has been shown to be critical for the establishment of the cytoplasmic processes mediating the communication between osteocytes and bone-lining cells. Considering the well-known fact that not all osteoblasts transform into osteocytes, and in accordance with the present data, we suggest that MT1-MMP is needed at the very beginning of osteocytogenesis and may additionally determine whether an osteoblast further differentiates into an osteocyte.

26 citations

Journal ArticleDOI
TL;DR: It is suggested that tumour derived TRAP contributes to the raised enzyme activity found in the serum of breast cancer patients.

25 citations

Journal Article
C Andersen1, C M Bagi, S W Adams
TL;DR: The CWR22 human prostate cell line used in an intra-tibial nude rat model provides a useful system to study mechanisms involved in osteoblastic and osteolytic bony metastases and may provide a critical tool for drug development efforts focused on developing integrated systemic therapy targeting the tumor in its specific primary or/and metastatic microenvironments.
Abstract: We investigated the utility of CWR22 human prostate cancer cells for modeling human metastatic prostate cancer, specifically their ability to induce bone formation following intra-tibial injections in the nude rat. Prostate cancer is unique in regard to its tropism for bone and ability to induce new bone formation. In contrast to humans, other mammalian species rarely develop prostatic cancer spontaneously upon aging and do not have the propensity for bone metastasis that is the hallmark of cancer malignancy in men. We chose human prostate cancer cell line CWR22 based on its properties, which closely resemble all of the features that characterize the early stages of prostatic cancer in human patients including slow growth rate, hormone dependence/independence and secretion of prostate-specific antigen. When CWR22 cells were injected directly into the proximal tibia of immunodeficient male rats, both osteoblastic and osteolytic features became evident after 4 to 6 weeks, with elevated levels of serum prostate-specific antigen. However, osteosclerosis dominates the skeletal response to tumor burden. Radiological and histological evidence revealed osteosclerotic lesions with trabeculae of newly formed bone lined by active osteoblasts and surrounded by tumor cells. Toward the end of the 7-week study, osteolytic bone lesions become more evident on X-rays. Paraffin and immunohistochemical evaluations revealed mature bone matrix resorption as evidenced by the presence of many tartrate resistant acid phosphatase positive multinucleated osteoclasts. We conclude that the CWR22 human prostate cell line used in an intra-tibial nude rat model provides a useful system to study mechanisms involved in osteoblastic and osteolytic bony metastases. This type of in vivo model that closely mimics all major features of metastatic disease in humans may provide a critical tool for drug development efforts focused on developing integrated systemic therapy targeting the tumor in its specific primary or/and metastatic microenvironments. In addition to targeting bone marrow stroma, this strategy will help to overcome classical drug resistance seen at the sites of prostate cancer metastasis to bones.

25 citations

Journal ArticleDOI
TL;DR: It is concluded that concomitant administration of alendronate can prevent cyclosporine A-associated alveolar bone loss.
Abstract: Background and Objective: Cyclosporine A is an immunosuppressive drug that is widely used in organ transplant patients as well as to treat a number of autoimmune conditions. Bone loss is reported as a significant side-effect of cyclosporine A use because this can result in serious morbidity of the patients. As we have shown that cyclosporine A-associated bone loss can also affect the alveolar bone, the purpose of this study was to evaluate the effect of the concomitant administration of alendronate on alveolar bone loss in a rat model. Material and Methods: Forty Wistar rats (10 per group) were given cyclosporine A (10 mg/kg, daily), alendronate (0.3 mg/kg, weekly), or both cyclosporine A and alendronate, for 60 d. The control group received daily injections of sterile saline. The expression of proteins associated with bone turnover, including osteocalcin, alkaline phosphatase and tartrate-resistant acid phosphatase (TRAP), and also the calcium levels, were evaluated in the serum. Analysis of the bone volume, alveolar bone surface, the number of osteoblasts per bone surface and the number of osteoclasts per bone surface around the lower first molars was also performed. Results: The results indicate that cyclosporine A treatment was associated with bone resorption, represented by a decrease in the bone volume, alveolar bone surface and the number of osteoblasts per bone surface and by an increase in the number of osteoclasts per bone surface and TRAP-5b. These effects were effectively counteracted by concomitant alendronate administration. Conclusion: It is concluded that concomitant administration of alendronate can prevent cyclosporine A-associated alveolar bone loss.

25 citations


Network Information
Related Topics (5)
Bone marrow
87.5K papers, 3.1M citations
76% related
Stem cell
129.1K papers, 5.9M citations
73% related
Cell culture
133.3K papers, 5.3M citations
72% related
Angiogenesis
58.2K papers, 3.2M citations
72% related
Cellular differentiation
90.9K papers, 6M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202238
202126
202025
201913
201821