scispace - formally typeset
Search or ask a question
Topic

Tartrate-resistant acid phosphatase

About: Tartrate-resistant acid phosphatase is a research topic. Over the lifetime, 1115 publications have been published within this topic receiving 45937 citations. The topic is also known as: HPAP & SPENCDI.


Papers
More filters
Journal ArticleDOI
TL;DR: An enhancement of osteoblast differentiation in the 3D mineralized environment that in turn promoted earlier osteoclast differentiation was observed and led to a deposition of extracellular matrix that faithfully reflected the morphology of bone tissue.
Abstract: There is increasing interest in developing new in vitro tissue models using typical tissue engineering approaches. This study was designed to (1) develop a novel three-dimensional (3D) in vitro model of bone by seeding murine primary osteoblasts and osteoclast precursors on a resorbable porous ceramic scaffold based on silicon-stabilized tricalcium phosphate (Skelite), and (2) investigate bone cell interactions in a 3D environment mimicking an in vivo condition and compare it to traditional two-dimensional (2D) cultures. Murine primary osteoblasts from C57Bl6/J mice and osteoclast precursors from C57Bl/6-Tg(ACTB-EGFP)1Osb/J mice were co-cultured on 3D Skelite scaffolds and on standard plastic culture dishes. The differentiation of these cells in both culture conditions was compared by histology (hematoxylin-eosin staining and polarized light analysis), immunohistochemistry (collagen type I), and gene expression analysis by real-time PCR for Runt-related transcription factor 2, osterix, osteocalcin, cathepsin K, and tartrate resistant acid phosphatase. To analyze and compare bone turnover in 3D and 2D co-cultures, we evaluated the modulation of RANKL and OPG mRNA expression. We observed an enhancement of osteoblast differentiation in the 3D mineralized environment that in turn promoted earlier osteoclast differentiation. In this paper, we also report that the increased osteoblast differentiation in the 3D model led to a deposition of extracellular matrix that faithfully reflected the morphology of bone tissue.

73 citations

Journal ArticleDOI
TL;DR: It is concluded that TRAP circulates in the serum as part of a complex, which also contains Ca2+, and that TR AP‐immunoassay is a potentially useful method for determining bone resorption rates, as long as the complex is destroyed before the assay.
Abstract: Osteoclasts secrete tartrate-resistant acid phosphatase (TRAP) to the circulation, where the amount of TRAP is expected to correlate with the bone resorption rate. We have developed two monoclonal antibodies, O1A and J1B, using purified human bone TRAP as antigen. The antibodies recognized different epitopes, allowing us to develop a two-site fluoroimmunoassay. The immunoreactivity in fresh serum specimens was less than 10% of the concentrations measured from the same specimens after 24 h of storage at 4 degrees C, or after addition of 5 mM EDTA or EGTA to them. When fresh serum was gel filtrated using Sephacryl S-200 column, all of the enzyme eluted in the void volume as a complex with a molecular weight of more than 250 kDa. If the serum was treated with EDTA before the gel filtration, the complex was destroyed and the enzyme eluted in fractions corresponding to a molecular weight of 30 kDa, the size of monomeric purified human bone TRAP. The immunoassay was used to measure TRAP concentrations from serum samples that had been stored at 4 degrees C for 24 h. According to the assay, premenopausal women had 13.1 +/- 3.1, postmenopausal women 17.6 +/- 4.2, and children 32.6 +/- 12.2 microg TRAP/l of serum. We conclude that TRAP circulates in the serum as part of a complex, which also contains Ca2+, and that TRAP-immunoassay is a potentially useful method for determining bone resorption rates, as long as the complex is destroyed before the assay.

72 citations

Journal Article
TL;DR: Serum TRACP 5b activity is normal in breast cancer patients without bone metastases, and elevated in approximately 80% of breast cancers patients with bone metastased patients, suggesting that serum TRACP5b activity may be a useful marker for the early detection of the spreading of breast cancer cells to bone.
Abstract: Bone resorbing osteoclasts contain high amounts of tartrate-resistant acid phosphatase (TRACP) 5b and secrete it into the blood circulation. Circulating TRACP 5b activity is derived exclusively from osteoclasts. We have developed a TRACP 5b-specific-immunoassay using a monoclonal antibody O1A that was developed using TRACP 5b purified from human osteoclasts as antigen. Serum TRACP 5b activity has a low diurnal variability, and it does not accumulate in the circulation in renal or hepatic failure. It is elevated in 80% of patients with osteoporosis, while decreased 40-50% after antiresorptive therapy with estrogen and the bisphosphonate alendronate. Preliminary results show that serum TRACP 5b activity is normal in breast cancer patients without bone metastases, and elevated in approximately 80% of breast cancer patients with bone metastases. These results suggest that serum TRACP 5b activity may be a useful marker for the early detection of the spreading of breast cancer cells to bone.

72 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of cell-cell interaction on the mRNA expression of adhesion molecules and molecules involved in osteoclast formation in cultures of peripheral blood mononuclear cells (PBMCs) and human primary periodontal ligament fibroblasts, both as solitary cultures and in co-culture.
Abstract: The formation of bone resorbing osteoclasts in vivo is orchestrated by cells of the osteoblast lineage such as periodontal ligament fibroblasts that provide the proper signals to osteoclast precursors. Although the requirement of cell-cell interactions is widely acknowledged, it is unknown whether these interactions influence the expression of genes required for osteoclastogenesis and the ultimate formation of osteoclasts. In the present study we investigated the effect of cell-cell interaction on the mRNA expression of adhesion molecules and molecules involved in osteoclast formation in cultures of peripheral blood mononuclear cells (PBMCs) and human primary periodontal ligament fibroblasts, both as solitary cultures and in co-culture. We further analyzed the formation of multinucleated, tartrate resistant acid phosphatase (TRACP) positive cells and assessed their bone resorbing abilities. Interestingly, gene expression of intercellular adhesion molecule-1 (ICAM-1) and of osteoclastogenesis-related genes (RANKL, RANK, TNF-alpha, and IL-1beta) was highly up-regulated in the co-cultures compared to mono-cultures and the 5-10-fold up-regulation reflected a synergistic increase due to direct cell-cell interaction. This induction strongly overpowered the effects of known osteoclastogenesis inducers 1,25(OH)(2)VitD(3) and dexamethasone. In case of indirect cell-cell contact mRNA expression was not altered, indicating that heterotypic adhesion is required for the increase in gene expression. In addition, the number of osteoclast-like cells that were formed in co-culture with periodontal ligament fibroblasts was significantly augmented compared to mono-cultures. Our data indicate that cell-cell adhesion between osteoclast precursors and periodontal ligament fibroblasts significantly modulates the cellular response which favors the expression of osteoclast differentiation genes and the ultimate formation of osteoclasts.

72 citations

Journal ArticleDOI
TL;DR: The results suggest that the differentiation of osteoclast precursors into osteoclasts is suppressed at high concentrations of IL-17A, which suppresses the hydrolysis of matrix proteins during bone resorption by decreasing the production of cathepsin K and MMP-9 in osteoclast.

71 citations


Network Information
Related Topics (5)
Bone marrow
87.5K papers, 3.1M citations
76% related
Stem cell
129.1K papers, 5.9M citations
73% related
Cell culture
133.3K papers, 5.3M citations
72% related
Angiogenesis
58.2K papers, 3.2M citations
72% related
Cellular differentiation
90.9K papers, 6M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202238
202126
202025
201913
201821