scispace - formally typeset
Search or ask a question
Topic

Tartrate-resistant acid phosphatase

About: Tartrate-resistant acid phosphatase is a research topic. Over the lifetime, 1115 publications have been published within this topic receiving 45937 citations. The topic is also known as: HPAP & SPENCDI.


Papers
More filters
Journal ArticleDOI
01 Jan 2006-Bone
TL;DR: Liver-derived IGF-I is permissive for ovx-induced trabecular bone loss and might exert this permissive action by modulation of the number of T-cells and the expression of IL-7, which in turn is of importance for the RANKL/OPG ratio and consequently osteoclastogenesis in the bone marrow.

42 citations

Journal ArticleDOI
TL;DR: Results indicate that macrophages responding to HA particles are capable of osteoclast differntiation and suggest that particles derived from uncemented (HA-coated) implants are likely to induce less osteoc Last formation and osteolysis than cemented implants.
Abstract: Hydroxyapatite (HA) coatings have been used to improve implant fixation by promoting bone formation around the prosthesis. A macrophage response to HA particulates has been noted around loosened HA-coated prostheses. As biomaterial wear particle-associated macrophages are known to be capable of differentiating into osteoclasts that are capable of bone resorption, we examined whether particulate HA could similarly induce macrophage-osteoclast differentiation. HA-associated macrophages were isolated from granulomas, formed by subcutaneous implantation of HA, and co-cultured with UMR 106 osteoblast-like cells in the presence of 1,25-dihydroxyvitamin D(3) for up to 14 days on glass coverslips and bone slices. HA-associated macrophage-osteoclast differentiation was evidenced by the formation of numerous multinucleated tartrate resistant acid phosphatase (TRAP)-positive cells which formed lacunar resorption pits on bone slices. Polymethylmethacrylate (PMMA) particle-associated macrophages, isolated from subcutaneous PMMA-containing granulomas, caused significantly more osteoclast formation and bone resorption than HA-associated macrophages. These results indicate that macrophages responding to HA particles are capable of osteoclast differentiation. They also suggest that particles derived from uncemented (HA-coated) implants are likely to induce less osteoclast formation and osteolysis than cemented implants.

42 citations

Journal ArticleDOI
TL;DR: Current histochemical, immunohistochemical, and in situ hybridization studies of rat and canine bones confirmed TRAP enzyme activity, TRAP immunoreactivity, and the expression of Trap mRNA signals in osteocytes located close to the bone-resorbing surface.
Abstract: Enzymatic activity of type 5 tartrate-resistant acid phosphatase (TRAP) has been regarded as one of the reliable markers for osteoclasts and their precursors. The presence of TRAP activity in osteocytes near the bone resorbing surface has also been pointed out in some reports. However, the significance of TRAP reactions in osteocytes remains controversial and, in fact, there is no agreement as to whether the histochemical enzyme reactions in osteocytes represent the TRAP enzyme generated by the respective osteocytes or is a mere diffusion artifact of the reaction products derived from the nearby osteoclasts. Current histochemical, immunohistochemical, and in situ hybridization studies of rat and canine bones confirmed TRAP enzyme activity, TRAP immunoreactivity, and the expression of Trap mRNA signals in osteocytes located close to the bone-resorbing surface. TRAP/Trap-positive osteocytes thus identified were confined to the areas no further than 200 um from the bone-resorbing surface and showed apparent upregulation of TRAP/Trap expression toward the active osteoclasts. Spatial and temporal patterns of TRAP/Trap expression in the osteocytes should serve as a valuable parameter for further analyses of biological interactions between the osteocytes and the osteoclasts associated with bone remodeling.

42 citations

Journal ArticleDOI
TL;DR: It is shown that unlike the PGE2 receptors EP2 and EP4, the EP1 receptor is a negative regulator that acts at multiple stages of the fracture healing process, and inhibition of EP1 signaling is a potential means to enhance fracture healing.
Abstract: As a downstream product of cyclooxygenase 2 (COX-2), prostaglandin E2 (PGE2) plays a crucial role in the regulation of bone formation. It has four different receptor subtypes (EP1 through EP4), each of which exerts different effects in bone. EP2 and EP4 induce bone formation through the protein kinase A (PKA) pathway, whereas EP3 inhibits bone formation in vitro. However, the effect of EP1 receptor signaling during bone formation remains unclear. Closed, stabilized femoral fractures were created in mice with EP1 receptor loss of function at 10 weeks of age. Healing was evaluated by radiographic imaging, histology, gene expression studies, micro–computed tomographic (µCT), and biomechanical measures. EP1−/− mouse fractures have increased formation of cartilage, increased fracture callus, and more rapid completion of endochondral ossification. The fractures heal faster and with earlier fracture callus mineralization with an altered expression of genes involved in bone repair and remodeling. Fractures in EP1−/− mice also had an earlier appearance of tartrate-resistant acid phosphatase (TRAcP)–positive osteoclasts, accelerated bone remodeling, and an earlier return to normal bone morphometry. EP1−/− mesenchymal progenitor cells isolated from bone marrow have higher osteoblast differentiation capacity and accelerated bone nodule formation and mineralization in vitro. Loss of the EP1 receptor did not affect EP2 or EP4 signaling, suggesting that EP1 and its downstream signaling targets directly regulate fracture healing. We show that unlike the PGE2 receptors EP2 and EP4, the EP1 receptor is a negative regulator that acts at multiple stages of the fracture healing process. Inhibition of EP1 signaling is a potential means to enhance fracture healing. © 2011 American Society for Bone and Mineral Research.

42 citations

Journal ArticleDOI
TL;DR: The results show that there are specific gender/age-related differences in osteoclast formation and bone resorption and have implications for evaluating osteOClastogenesis in skeletal diseases such as primary osteoporosis and Paget's disease.
Abstract: A number of bone diseases characterised by excessive osteolysis (e.g. osteoporosis and Paget’s disease) exhibit a marked gender difference in prevalence and are more common in the elderly population. Bone resorption is carried out by osteoclasts, which are formed by fusion of circulating mononuclear precursor cells of haematopoietic origin. In this study, we have determined whether there are gender- and age-related differences in osteoclast formation from circulating precursors. Peripheral blood mononuclear cells (PBMCs) were co-cultured with UMR106 osteoblast-like cells in the presence of macrophage-colony stimulating factor (M-CSF) and 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) or cultured alone in the presence of sRANKL (soluble receptor activator of nuclear factor B ligand) and M-CSF. As assessed by the formation of tartrate resistant acid phosphatase (TRAP)positive (TRAP + ) and vitronectin receptor-positive (VNR + ) multinucleated cells (MNCs), there was no

41 citations


Network Information
Related Topics (5)
Bone marrow
87.5K papers, 3.1M citations
76% related
Stem cell
129.1K papers, 5.9M citations
73% related
Cell culture
133.3K papers, 5.3M citations
72% related
Angiogenesis
58.2K papers, 3.2M citations
72% related
Cellular differentiation
90.9K papers, 6M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202238
202126
202025
201913
201821