scispace - formally typeset
Search or ask a question
Topic

Tartrate-resistant acid phosphatase

About: Tartrate-resistant acid phosphatase is a research topic. Over the lifetime, 1115 publications have been published within this topic receiving 45937 citations. The topic is also known as: HPAP & SPENCDI.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that 1 alpha,25(OH)2D3 induces TRACP activity and CT receptors almost simultaneously in mouse marrow cultures, and the MNCs formed in vitro respond to CT as authentic osteoclasts do.
Abstract: We have developed a mouse marrow culture system, in which multinucleated cells (MNCs) are formed within 6-8 days. These MNCs showed several characteristics of osteoclasts, including tartrate-resistant acid phosphatase (TRACP) and the ability to resorb calcified dentine. lα,25-Dihydroxyvitamin D3 [lα,25(OH)2D3] stimulated the formation of TRACPpositive MNCs, and salmon calcitonin (CT) inhibited it. In this study, we examined whether the TRACP-positive MNCs formed from mouse marrow cells possess CT receptors, another typical characteristic of osteoclasts. Mouse marrow cells cultured for 8 days with 10 nM lα,25(OH)2D3 and freshly isolated authentic mouse osteoclasts were incubated with [125I]-salmon CT in the presence or absence of excess amounts of unlabeled CT, stained for TRACP, and processed for autoradiography. The [125I]-CT exclusively bound to TRACP-positive mononuclear cells and MNCs formed in the lα,25(OH)2D3-treated cultures and also to isolated mouse osteoclasts. Both [125I]-CT binding and TRACP a...

176 citations

Journal ArticleDOI
TL;DR: Findings provide a rationale for novel therapies targeting pH handling mechanisms in osteoclasts and their microenvironment.
Abstract: Background: Osteopetrosis, a genetic disease characterised by osteoclast failure, is classified into three forms: infantile malignant autosomal recessive osteopetrosis (ARO), intermediate autosomal recessive osteopetrosis (IRO), and autosomal dominant osteopetrosis (ADO). Methods: We studied 49 patients, 21 with ARO, one with IRO, and 27 with type II ADO (ADO II). Results: Most ARO patients bore known or novel (one case) ATP6i (TCIRG1) gene mutations. Six ADO II patients had no mutations in ClCN7, the only so far recognised gene implicated, suggesting involvement of yet unknown genes. Identical ClCN7 mutations produced differing phenotypes with variable degrees of severity. In ADO II, serum tartrate resistant acid phosphatase was always elevated. Bone alkaline phosphatase (BALP) was generally low, but osteocalcin was high, suggesting perturbed osteoblast differentiation or function. In contrast, BALP was high in ARO patients. Elevated osteoclast surface/bone surface was noted in biopsies from most ARO patients. Cases with high osteoclasts also showed increased osteoblast surface/bone surface. ARO osteoclasts were morphologically normal, with unaltered formation rates, intracellular pH handling, and response to acidification. Their resorption activity was greatly reduced, but not abolished. In control osteoclasts, all resorption activity was abolished by combined inhibition of proton pumping and sodium/proton antiport. Conclusions: These findings provide a rationale for novel therapies targeting pH handling mechanisms in osteoclasts and their microenvironment.

173 citations

Journal ArticleDOI
TL;DR: In this article, the effect of zinc compounds on osteoclast-like cell formation in mouse marrow culture in vitro was investigated, and it was shown that zinc compounds have a potent inhibitory effect on osteocallastlike multinucleated cells.

172 citations

Journal ArticleDOI
TL;DR: It is demonstrated that VDR-mediated actions of 1,25(OH)2D in osteoblasts are essential for osteoclast formation by 1,24-dihydroxyvitamin D, and that functionally intact osteoclasts can be formed without 1, 25(OH),2D actions under stimulations by other agents.
Abstract: Previous studies have shown that 1,25-dihydroxyvitamin D [1,25(OH)2D] plays important roles in the formation of osteoclasts through its actions on osteoblastic cells. We have generated mice lacking vitamin D receptor (VDR) by gene targeting (VDR-/-). These mice had tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and exhibited similar levels of parameters for bone resorption to those in wild type mice. The present studies were undertaken to clarify whether effects of 1,25(OH)2D on osteoclast formation require VDR in osteoblasts, and to examine mechanisms of the formation of osteoclasts without VDR-mediated actions using VDR-/- mice. When wild-type calvarial osteoblasts and spleen cells were co-cultured with 1,25(OH)2D, TRAP-positive osteoclasts were formed regardless of the genotypes of spleen cells. In contrast, when osteoblasts from VDR-/- mice were co-cultured, no osteoclasts could be formed even with wild-type spleen cells. Parathyroid hormone and interleukin-1alpha stimulated osteoclast formation by co-cultures from VDR-/- mice, and the generated osteoclasts showed resorbing activity. These results demonstrate that VDR-mediated actions of 1,25(OH)2D in osteoblasts are essential for osteoclast formation by 1,25(OH)2D, and that functionally intact osteoclasts can be formed without 1,25(OH)2D actions under stimulations by other agents. It is suggested that osteoclastic bone resorption can be maintained without 1,25(OH)2D actions by other stimulatory agents.

171 citations

Journal ArticleDOI
TL;DR: TRPV5 deficiency leads to an increase in osteoclast size and number, in which Ca(2+) resorption is nonfunctional, and the significance of transcellular Ca( 2+) transport in osteoclastic function is demonstrated.
Abstract: Bone remodeling involves the interplay of bone resorption and formation and is accurately controlled to maintain bone mass. Both processes require transcellular Ca(2+) transport, but the molecular mechanisms engaged remain largely elusive. The epithelial Ca(2+) channel TRPV5 is one of the most Ca(2+)-selective transient receptor potential (TRP) channels. In this study, the functional role of TRPV5 in bone was investigated. TRPV5 mRNA was expressed in human and murine bone samples and in osteoclasts along with other genes involved in transcellular Ca(2+) transport, including calbindin-D(9K) and calbindin-D(28K), Na(+)/Ca(2+) exchanger 1, and plasma membrane Ca(2+)-ATPase 1b. TRPV5 expression in murine osteoclasts was confirmed by immunostaining and showed predominant localization to the ruffled border membrane. However, TRPV5 was absent in osteoblasts. Analyses of femoral bone sections from TRPV5 knockout (TRPV5(-/-)) mice revealed increased osteoclast numbers and osteoclast area, whereas the urinary bone resorption marker deoxypyridinoline was reduced compared with WT (TRPV5(+/+)) mice. In an in vitro bone marrow culture system, the amount of osteoclasts and number of nuclei per osteoclast were significantly elevated in TRPV5(-/-) compared with TRPV5(+/+) mice. However, using a functional resorption pit assay, we found that bone resorption was nearly absent in osteoclast cultures from TRPV5(-/-) mice, supporting the impaired resorption observed in vivo. In conclusion, TRPV5 deficiency leads to an increase in osteoclast size and number, in which Ca(2+) resorption is nonfunctional. This report identifies TRPV5 as an epithelial Ca(2+) channel that is essential for osteoclastic bone resorption and demonstrates the significance of transcellular Ca(2+) transport in osteoclastic function.

170 citations


Network Information
Related Topics (5)
Bone marrow
87.5K papers, 3.1M citations
76% related
Stem cell
129.1K papers, 5.9M citations
73% related
Cell culture
133.3K papers, 5.3M citations
72% related
Angiogenesis
58.2K papers, 3.2M citations
72% related
Cellular differentiation
90.9K papers, 6M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20239
202238
202126
202025
201913
201821