scispace - formally typeset
Search or ask a question

Showing papers on "Task (computing) published in 2019"


Proceedings ArticleDOI
15 Jun 2019
TL;DR: The proposed Multi-Task Attention Network (MTAN) consists of a single shared network containing a global feature pool, together with a soft-attention module for each task, which allows learning of task-specific feature-level attention.
Abstract: We propose a novel multi-task learning architecture, which allows learning of task-specific feature-level attention. Our design, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with a soft-attention module for each task. These modules allow for learning of task-specific features from the global features, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be trained end-to-end and can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. We evaluate our approach on a variety of datasets, across both image-to-image predictions and image classification tasks. We show that our architecture is state-of-the-art in multi-task learning compared to existing methods, and is also less sensitive to various weighting schemes in the multi-task loss function. Code is available at https://github.com/lorenmt/mtan.

666 citations


Posted Content
TL;DR: This work empirically analyze the effectiveness of a very small episodic memory in a CL setup where each training example is only seen once and finds that repetitive training on even tiny memories of past tasks does not harm generalization, on the contrary, it improves it.
Abstract: In continual learning (CL), an agent learns from a stream of tasks leveraging prior experience to transfer knowledge to future tasks. It is an ideal framework to decrease the amount of supervision in the existing learning algorithms. But for a successful knowledge transfer, the learner needs to remember how to perform previous tasks. One way to endow the learner the ability to perform tasks seen in the past is to store a small memory, dubbed episodic memory, that stores few examples from previous tasks and then to replay these examples when training for future tasks. In this work, we empirically analyze the effectiveness of a very small episodic memory in a CL setup where each training example is only seen once. Surprisingly, across four rather different supervised learning benchmarks adapted to CL, a very simple baseline, that jointly trains on both examples from the current task as well as examples stored in the episodic memory, significantly outperforms specifically designed CL approaches with and without episodic memory. Interestingly, we find that repetitive training on even tiny memories of past tasks does not harm generalization, on the contrary, it improves it, with gains between 7\% and 17\% when the memory is populated with a single example per class.

300 citations


Posted Content
01 Jan 2019
TL;DR: It is observed that a very simple baseline, which jointly trains on both examples from the current task as well as examples stored in the memory, outperforms state-of-the-art CL approaches with and without episodic memory.
Abstract: In continual learning (CL), an agent learns from a stream of tasks leveraging prior experience to transfer knowledge to future tasks. It is an ideal framework to decrease the amount of supervision in the existing learning algorithms. But for a successful knowledge transfer, the learner needs to remember how to perform previous tasks. One way to endow the learner the ability to perform tasks seen in the past is to store a small memory, dubbed episodic memory, that stores few examples from previous tasks and then to replay these examples when training for future tasks. In this work, we empirically analyze the effectiveness of a very small episodic memory in a CL setup where each training example is only seen once. Surprisingly, across four rather different supervised learning benchmarks adapted to CL, a very simple baseline, that jointly trains on both examples from the current task as well as examples stored in the episodic memory, significantly outperforms specifically designed CL approaches with and without episodic memory. Interestingly, we find that repetitive training on even tiny memories of past tasks does not harm generalization, on the contrary, it improves it, with gains between 7\% and 17\% when the memory is populated with a single example per class.

228 citations


Posted Content
TL;DR: This work develops a large-scale, multi-task model that culminates in a single model on 12 datasets from four broad categories of task including visual question answering, caption-based image retrieval, grounding referring expressions, and multimodal verification and shows that finetuning task-specific models from this model can lead to further improvements, achieving performance at or above the state-of-the-art.
Abstract: Much of vision-and-language research focuses on a small but diverse set of independent tasks and supporting datasets often studied in isolation; however, the visually-grounded language understanding skills required for success at these tasks overlap significantly. In this work, we investigate these relationships between vision-and-language tasks by developing a large-scale, multi-task training regime. Our approach culminates in a single model on 12 datasets from four broad categories of task including visual question answering, caption-based image retrieval, grounding referring expressions, and multi-modal verification. Compared to independently trained single-task models, this represents a reduction from approximately 3 billion parameters to 270 million while simultaneously improving performance by 2.05 points on average across tasks. We use our multi-task framework to perform in-depth analysis of the effect of joint training diverse tasks. Further, we show that finetuning task-specific models from our single multi-task model can lead to further improvements, achieving performance at or above the state-of-the-art.

196 citations


Proceedings Article
01 Jan 2019
TL;DR: In this article, the authors propose an incremental learning method that is scalable to the number of sequential tasks in a continual learning process, which leverages the principles of deep model compression, critical weights selection, and progressive networks expansion.
Abstract: Continual lifelong learning is essential to many applications. In this paper, we propose a simple but effective approach to continual deep learning. Our approach leverages the principles of deep model compression, critical weights selection, and progressive networks expansion. By enforcing their integration in an iterative manner, we introduce an incremental learning method that is scalable to the number of sequential tasks in a continual learning process. Our approach is easy to implement and owns several favorable characteristics. First, it can avoid forgetting (i.e., learn new tasks while remembering all previous tasks). Second, it allows model expansion but can maintain the model compactness when handling sequential tasks. Besides, through our compaction and selection/expansion mechanism, we show that the knowledge accumulated through learning previous tasks is helpful to build a better model for the new tasks compared to training the models independently with tasks. Experimental results show that our approach can incrementally learn a deep model tackling multiple tasks without forgetting, while the model compactness is maintained with the performance more satisfiable than individual task training.

148 citations


Journal ArticleDOI
17 Jul 2019
TL;DR: A hierarchical model trained in a multi-task learning setup on a set of carefully selected semantic tasks achieves state-of-the-art results on a number of tasks, namely Named Entity Recognition, Entity Mention Detection and Relation Extraction without hand-engineered features or external NLP tools like syntactic parsers.
Abstract: Much effort has been devoted to evaluate whether multi-task learning can be leveraged to learn rich representations that can be used in various Natural Language Processing (NLP) down-stream applications. However, there is still a lack of understanding of the settings in which multi-task learning has a significant effect. In this work, we introduce a hierarchical model trained in a multi-task learning setup on a set of carefully selected semantic tasks. The model is trained in a hierarchical fashion to introduce an inductive bias by supervising a set of low level tasks at the bottom layers of the model and more complex tasks at the top layers of the model. This model achieves state-of-the-art results on a number of tasks, namely Named Entity Recognition, Entity Mention Detection and Relation Extraction without hand-engineered features or external NLP tools like syntactic parsers. The hierarchical training supervision induces a set of shared semantic representations at lower layers of the model. We show that as we move from the bottom to the top layers of the model, the hidden states of the layers tend to represent more complex semantic information.

144 citations


Proceedings Article
12 Jun 2019
TL;DR: In this paper, the authors propose a search method for neural network architectures that can already perform a task without any explicit weight training. But how important are the weight parameters of a neural network compared to its architecture, they question to what extent neural network architecture alone, without learning any weight parameters, can encode solutions for a given task.
Abstract: Not all neural network architectures are created equal, some perform much better than others for certain tasks. But how important are the weight parameters of a neural network compared to its architecture? In this work, we question to what extent neural network architectures alone, without learning any weight parameters, can encode solutions for a given task. We propose a search method for neural network architectures that can already perform a task without any explicit weight training. To evaluate these networks, we populate the connections with a single shared weight parameter sampled from a uniform random distribution, and measure the expected performance. We demonstrate that our method can find minimal neural network architectures that can perform several reinforcement learning tasks without weight training. On a supervised learning domain, we find network architectures that achieve much higher than chance accuracy on MNIST using random weights. Interactive version of this paper at https://weightagnostic.github.io/

123 citations


Proceedings Article
07 Sep 2019
TL;DR: The results show that LAMOL prevents catastrophic forgetting without any sign of intransigence and can perform five very different language tasks sequentially with only one model.
Abstract: Most research on lifelong learning applies to images or games, but not language. We present LAMOL, a simple yet effective method for lifelong language learning (LLL) based on language modeling. LAMOL replays pseudo-samples of previous tasks while requiring no extra memory or model capacity. Specifically, LAMOL is a language model that simultaneously learns to solve the tasks and generate training samples. When the model is trained for a new task, it generates pseudo-samples of previous tasks for training alongside data for the new task. The results show that LAMOL prevents catastrophic forgetting without any sign of intransigence and can perform five very different language tasks sequentially with only one model. Overall, LAMOL outperforms previous methods by a considerable margin and is only 2-3% worse than multitasking, which is usually considered the LLL upper bound. The source code is available at this https URL.

114 citations


Journal ArticleDOI
TL;DR: A novel multitask evolutionary algorithm with an online dynamic resource allocation strategy that allocates resources to each task adaptively according to the requirements of tasks and an adaptive method to control the resources invested into cross-domain searching.
Abstract: Evolutionary multitasking is a recently proposed paradigm to simultaneously solve multiple tasks using a single population. Most of the existing evolutionary multitasking algorithms treat all tasks equally and then assign the same amount of resources to each task. However, when the resources are limited, it is difficult for some tasks to converge to acceptable solutions. This paper aims at investigating the resource allocation in the multitasking environment to efficiently utilize the restrictive resources. In this paper, we design a novel multitask evolutionary algorithm with an online dynamic resource allocation strategy. Specifically, the proposed dynamic resource allocation strategy allocates resources to each task adaptively according to the requirements of tasks. We also design an adaptive method to control the resources invested into cross-domain searching. The proposed algorithm is able to allocate the computational resources dynamically according to the computational complexities of tasks. The experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-art algorithms on benchmark problems of multitask optimization.

113 citations


Posted Content
TL;DR: Alpaca as mentioned in this paper is a low-overhead programming model for intermittent computing on energy-harvesting devices, where updates of shared values in a task are privatized and only committed to main memory on successful execution of the task.
Abstract: The emergence of energy harvesting devices creates the potential for batteryless sensing and computing devices. Such devices operate only intermittently, as energy is available, presenting a number of challenges for software developers. Programmers face a complex design space requiring reasoning about energy, memory consistency, and forward progress. This paper introduces Alpaca, a low-overhead programming model for intermittent computing on energy-harvesting devices. Alpaca programs are composed of a sequence of user-defined tasks. The Alpaca runtime preserves execution progress at the granularity of a task. The key insight in Alpaca is the privatization of data shared between tasks. Updates of shared values in a task are privatized and only committed to main memory on successful execution of the task, ensuring that data remain consistent despite power failures. Alpaca provides a familiar programming interface and a highly efficient runtime model. We also present an alternate version of Alpaca, Alpaca-undo, that uses undo-logging and rollback instead of privatization and commit. We implemented a prototype of both versions of Alpaca as an extension to C with an LLVM compiler pass. We evaluated Alpaca, and directly compared to three systems from prior work. Alpacaconsistently improves performance compared to the previous systems, by up to 23.8x, while also improving memory footprint in many cases, by up to 17.6x.

99 citations


Journal ArticleDOI
TL;DR: The method will differentiate the tasks with higher complexity of handling, mounting, human safety and part feeding from low-complexity tasks, thereby simplifying collaborative automation in HRC scenario and significantly reduce deployment and changeover times.
Abstract: Over the past years, collaborative robots have been introduced as a new generation of industrial robotics working alongside humans to share the workload. These robots have the potential to enable human–robot collaboration (HRC) for flexible automation. However, the deployment of these robots in industrial environments, particularly in assembly, still comprises several challenges, of which one is skills-based tasks distribution between humans and robots. With ever-decreasing product life cycles and high-mix low volume production, the skills-based task distribution is to become a frequent activity. This paper aims to present a methodology for tasks distribution between human and robot in assembly work by complexity-based tasks classification.,The assessment method of assembly tasks is based on the physical features of the components and associated task description. The attributes that can influence assembly complexity for automation are presented. Physical experimentation with a collaborative robot and work with several industrial cases helped to formulate the presented method.,The method will differentiate the tasks with higher complexity of handling, mounting, human safety and part feeding from low-complexity tasks, thereby simplifying collaborative automation in HRC scenario. Such structured method for tasks distribution in HRC can significantly reduce deployment and changeover times.,Assembly attributes affecting HRC automation are identified. The methodology is presented for evaluating tasks for assigning to the robot and creating a work–load balance forming a human–robot work team. Finally, an assessment tool for simplified industrial deployment.

Proceedings Article
01 Dec 2019
TL;DR: This work proposes a principled online learning algorithm that dynamically combines different auxiliary tasks to speed up training for reinforcement learning and achieves significant speedup compared to previous heuristic approches of adapting auxiliary task weights.
Abstract: Reinforcement learning is known to be sample inefficient, preventing its application to many real-world problems, especially with high dimensional observations like images. Transferring knowledge from other auxiliary tasks is a powerful tool for improving the learning efficiency. However, the usage of auxiliary tasks has been limited so far due to the difficulty in selecting and combining different auxiliary tasks. In this work, we propose a principled online learning algorithm that dynamically combines different auxiliary tasks to speed up training for reinforcement learning. Our method is based on the idea that auxiliary tasks should provide gradient directions that, in the long term, help to decrease the loss of the main task. We show in various environments that our algorithm can effectively combine a variety of different auxiliary tasks and achieves significant speedup compared to previous heuristic approches of adapting auxiliary task weights.

Posted Content
TL;DR: This paper designs a meta-regularization objective using information theory that places precedence on data-driven adaptation and demonstrates its applicability to both contextual and gradient-based meta-learning algorithms, and applies it in practical settings where applying standard meta- learning has been difficult.
Abstract: The ability to learn new concepts with small amounts of data is a critical aspect of intelligence that has proven challenging for deep learning methods. Meta-learning has emerged as a promising technique for leveraging data from previous tasks to enable efficient learning of new tasks. However, most meta-learning algorithms implicitly require that the meta-training tasks be mutually-exclusive, such that no single model can solve all of the tasks at once. For example, when creating tasks for few-shot image classification, prior work uses a per-task random assignment of image classes to N-way classification labels. If this is not done, the meta-learner can ignore the task training data and learn a single model that performs all of the meta-training tasks zero-shot, but does not adapt effectively to new image classes. This requirement means that the user must take great care in designing the tasks, for example by shuffling labels or removing task identifying information from the inputs. In some domains, this makes meta-learning entirely inapplicable. In this paper, we address this challenge by designing a meta-regularization objective using information theory that places precedence on data-driven adaptation. This causes the meta-learner to decide what must be learned from the task training data and what should be inferred from the task testing input. By doing so, our algorithm can successfully use data from non-mutually-exclusive tasks to efficiently adapt to novel tasks. We demonstrate its applicability to both contextual and gradient-based meta-learning algorithms, and apply it in practical settings where applying standard meta-learning has been difficult. Our approach substantially outperforms standard meta-learning algorithms in these settings.

Posted Content
TL;DR: In this paper, the authors present a framework for data-driven robotics that makes use of a large dataset of recorded robot experience and scales to several tasks using learned reward functions, and apply this framework to accomplish three different object manipulation tasks on a real robot platform.
Abstract: We present a framework for data-driven robotics that makes use of a large dataset of recorded robot experience and scales to several tasks using learned reward functions. We show how to apply this framework to accomplish three different object manipulation tasks on a real robot platform. Given demonstrations of a task together with task-agnostic recorded experience, we use a special form of human annotation as supervision to learn a reward function, which enables us to deal with real-world tasks where the reward signal cannot be acquired directly. Learned rewards are used in combination with a large dataset of experience from different tasks to learn a robot policy offline using batch RL. We show that using our approach it is possible to train agents to perform a variety of challenging manipulation tasks including stacking rigid objects and handling cloth.

Posted Content
TL;DR: It is shown that graph-based relational architectures overcome this limitation and enable learning of complex tasks when provided with a simple curriculum of tasks with increasing numbers of objects, and exhibits zero-shot generalization.
Abstract: Learning robotic manipulation tasks using reinforcement learning with sparse rewards is currently impractical due to the outrageous data requirements. Many practical tasks require manipulation of multiple objects, and the complexity of such tasks increases with the number of objects. Learning from a curriculum of increasingly complex tasks appears to be a natural solution, but unfortunately, does not work for many scenarios. We hypothesize that the inability of the state-of-the-art algorithms to effectively utilize a task curriculum stems from the absence of inductive biases for transferring knowledge from simpler to complex tasks. We show that graph-based relational architectures overcome this limitation and enable learning of complex tasks when provided with a simple curriculum of tasks with increasing numbers of objects. We demonstrate the utility of our framework on a simulated block stacking task. Starting from scratch, our agent learns to stack six blocks into a tower. Despite using step-wise sparse rewards, our method is orders of magnitude more data-efficient and outperforms the existing state-of-the-art method that utilizes human demonstrations. Furthermore, the learned policy exhibits zero-shot generalization, successfully stacking blocks into taller towers and previously unseen configurations such as pyramids, without any further training.

Journal ArticleDOI
TL;DR: A framework that allows a robot manipulator to learn how to execute structured tasks from human demonstrations by combining physical human–robot interaction with attentional supervision in order to support kinesthetic teaching, incremental learning, and cooperative execution of hierarchically structured tasks.
Abstract: We present a framework that allows a robot manipulator to learn how to execute structured tasks from human demonstrations. The proposed system combines physical human–robot interaction with attentional supervision in order to support kinesthetic teaching, incremental learning, and cooperative execution of hierarchically structured tasks. In the proposed framework, the human demonstration is automatically segmented into basic movements, which are related to a task structure by an attentional system that supervises the overall interaction. The attentional system permits to track the human demonstration at different levels of abstraction and supports implicit non-verbal communication both during the teaching and the execution phase. Attention manipulation mechanisms (e.g. object and verbal cueing) can be exploited by the teacher to facilitate the learning process. On the other hand, the attentional system permits flexible and cooperative task execution. The paper describes the overall system architecture and details how cooperative tasks are learned and executed. The proposed approach is evaluated in a human–robot co-working scenario, showing that the robot is effectively able to rapidly learn and flexibly execute structured tasks.

Journal ArticleDOI
TL;DR: This paper proposes a learning-driven algorithm to accurately predict TETs of all tasks in such an asymmetrically informed edge computing environment and designs a task offloading algorithm, called Maximum Efficiency First Ordered (MEFO), to achieve near-optimal efficiency.
Abstract: Edge computing emerges as a promising paradigm to decentralize computation power to the edge of the network and thus improve user experience by task offloading. A user can perfectly schedule his tasks to be executed on edge servers if the execution time of all tasks can be known beforehand. However, it is difficult to know the task execution time (TET) before performing actual offloading, which normally varies on edge servers with different software and hardware configurations. Moreover, such configuration information is not always available to end users due to security concerns. In this paper, we first propose a learning-driven algorithm to accurately predict TETs of all tasks in such an asymmetrically informed edge computing environment. The basic idea is to predict unknown TETs using only a small sampled set of TETs by exploiting the underlying correlation between TETs and edge server configurations. Next, we formulate the problem of task offloading into a constrained optimization problem, which is unfortunately proved to be NP-hard. To address the above challenge, we design a task offloading algorithm, called Maximum Efficiency First Ordered (MEFO), to achieve near-optimal efficiency. Field measurements and experiments have been conducted to demonstrate that our proposed learning-driven algorithm can predict TETs more accurately than other algorithms as long as the fraction of sampled TETs is larger than a small predefined threshold, and our proposed MEFO algorithm achieves a much higher success rate of task offloading and a shorter processing delay with very limited information of edge servers.

Journal ArticleDOI
01 Jul 2019
TL;DR: In this paper, a plan-structured neural network is proposed to predict the latency of query operators and input relations in query execution plans, and a number of optimizations are proposed to reduce training overhead without sacrificing effectiveness.
Abstract: Query performance prediction, the task of predicting a query's latency prior to execution, is a challenging problem in database management systems. Existing approaches rely on features and performance models engineered by human experts, but often fail to capture the complex interactions between query operators and input relations, and generally do not adapt naturally to workload characteristics and patterns in query execution plans. In this paper, we argue that deep learning can be applied to the query performance prediction problem, and we introduce a novel neural network architecture for the task: a plan-structured neural network. Our neural network architecture matches the structure of any optimizer-selected query execution plan and predict its latency with high accuracy, while eliminating the need for human-crafted input features. A number of optimizations are also proposed to reduce training overhead without sacrificing effectiveness. We evaluated our techniques on various workloads and we demonstrate that our approach can out-perform the state-of-the-art in query performance prediction.

Journal ArticleDOI
TL;DR: In this paper, an energy efficient IoT virtualization framework with peer-to-peer (P2P) networking and edge processing is proposed, where the peers in the work are represented by IoT objects and relays that host virtual machines.
Abstract: In this paper, an energy efficient IoT virtualization framework with peer-to-peer (P2P) networking and edge processing is proposed. In this network, the IoT task processing requests are served by peers. The peers in our work are represented by IoT objects and relays that host virtual machines (VMs). We have considered three scenarios to investigate the saving in power consumption and the system capabilities in terms of task processing. The first scenario is a ‘relays only’ scenario, where the task requests are processed using relays only. The second scenario is an ‘objects only’ scenario, where the task requests are processed using the IoT objects only. The last scenario is a hybrid scenario, where the task requests are processed using both IoT objects and VMs. We have developed a mixed integer linear programming (MILP) model to maximize the number of processing tasks served by the system, and minimize the total power consumed by the IoT network. Based on the MILP model principles, we developed an energy efficient virtualized IoT P2P networks heuristic (EEVIPN). Our results show that the hybrid scenario serves up to 77% (57% on average) processing task requests, but with higher energy consumption compared to the other scenarios. The relays only scenario serve 74% (57% on average) of the processing task requests with 8% saving in power consumption compared to the hybrid scenario. In contrast, 28% (22% on average) of task requests can be handled by the objects only scenario with up to 62% power saving compared to the hybrid scenario.

Journal ArticleDOI
TL;DR: A self-optimizing and self-programming computing system (SOSPCS) design framework that achieves both programmability and flexibility and exploits computing heterogeneity and concludes that SOSPCS provides performance improvement and energy reduction compared to the state-of-the-art approaches.
Abstract: There exists an urgent need for determining the right amount and type of specialization while making a heterogeneous system as programmable and flexible as possible. Therefore, in this paper, we pioneer a self-optimizing and self-programming computing system (SOSPCS) design framework that achieves both programmability and flexibility and exploits computing heterogeneity [e.g., CPUs, GPUs, and hardware accelerators (HWAs)]. First, at compile time, we form a task pool consisting of hybrid tasks with different processing element (PE) affinities according to target applications. Tasks preferred to be executed on GPUs or accelerators are detected from target applications by neural networks. Tasks suitable to run on CPUs are formed by community detection to minimize data movement overhead. Next, a distributed reinforcement learning-based approach is used at runtime to allow agents to map the tasks onto the network-on-chip-based heterogeneous PEs by learning an optimal policy based on $Q$ values in the environment. We have conducted experiments on a heterogeneous platform consisting of CPUs, GPUs, and HWAs with deep learning algorithms such as matrix multiplication, ReLU, and sigmoid functions. We concluded that SOSPCS provides performance improvement up to $4.12\times $ and energy reduction up to $3.24\times $ compared to the state-of-the-art approaches.

Proceedings Article
01 Jan 2019
TL;DR: A hierarchical setup where a high-level module learns to generate a series of first-person sub-goals conditioned on the third-person video demonstration, and a low-level controller predicts the actions to achieve those sub-Goals is proposed.
Abstract: We study a generalized setup for learning from demonstration to build an agent that can manipulate novel objects in unseen scenarios by looking at only a single video of human demonstration from a third-person perspective. To accomplish this goal, our agent should not only learn to understand the intent of the demonstrated third-person video in its context but also perform the intended task in its environment configuration. Our central insight is to enforce this structure explicitly during learning by decoupling what to achieve (intended task) from how to perform it (controller). We propose a hierarchical setup where a high-level module learns to generate a series of first-person sub-goals conditioned on the third-person video demonstration, and a low-level controller predicts the actions to achieve those sub-goals. Our agent acts from raw image observations without any access to the full state information. We show results on a real robotic platform using Baxter for the manipulation tasks of pouring and placing objects in a box. Project video is available at https://pathak22.github.io/hierarchical-imitation/

01 Jan 2019
TL;DR: HRL4IN is proposed, a novel Hierarchical RL architecture for Interactive Navigation tasks that exploits the exploration benefits of HRL over flat RL for long-horizon tasks thanks to temporally extended commitments towards subgoals and significantly outperforms its baselines in terms of task performance and energy efficiency.
Abstract: Most common navigation tasks in human environments require auxiliary arm interactions, e.g. opening doors, pressing buttons and pushing obstacles away. This type of navigation tasks, which we call Interactive Navigation, requires the use of mobile manipulators: mobile bases with manipulation capabilities. Interactive Navigation tasks are usually long-horizon and composed of heterogeneous phases of pure navigation, pure manipulation, and their combination. Using the wrong part of the embodiment is inefficient and hinders progress. We propose HRL4IN, a novel Hierarchical RL architecture for Interactive Navigation tasks. HRL4IN exploits the exploration benefits of HRL over flat RL for long-horizon tasks thanks to temporally extended commitments towards subgoals. Different from other HRL solutions, HRL4IN handles the heterogeneous nature of the Interactive Navigation task by creating subgoals in different spaces in different phases of the task. Moreover, HRL4IN selects different parts of the embodiment to use for each phase, improving energy efficiency. We evaluate HRL4IN against flat PPO and HAC, a state-of-the-art HRL algorithm, on Interactive Navigation in two environments - a 2D grid-world environment and a 3D environment with physics simulation. We show that HRL4IN significantly outperforms its baselines in terms of task performance and energy efficiency. More information is available at this https URL.

Proceedings ArticleDOI
01 Jun 2019
TL;DR: This work proposes a multi-stream multi-task network to take advantage of using feature representations from preceding frames in a video sequence for joint learning of segmentation, depth, and motion in order to better handle the difference in convergence rates of different tasks.
Abstract: Multi-task learning is commonly used in autonomous driving for solving various visual perception tasks. It offers significant benefits in terms of both performance and computational complexity. Current work on multi-task learning networks focus on processing a single input image and there is no known implementation of multi-task learning handling a sequence of images. In this work, we propose a multi-stream multi-task network to take advantage of using feature representations from preceding frames in a video sequence for joint learning of segmentation, depth, and motion. The weights of the current and previous encoder are shared so that features computed in the previous frame can be leveraged without additional computation. In addition, we propose to use the geometric mean of task losses as a better alternative to the weighted average of task losses. The proposed loss function facilitates better handling of the difference in convergence rates of different tasks. Experimental results on KITTI, Cityscapes and SYNTHIA datasets demonstrate that the proposed strategies outperform various existing multi-task learning solutions.

Proceedings ArticleDOI
01 Aug 2019
TL;DR: This work proposes a fully computational approach for modeling the transfer learning structure of the space of visual tasks via finding transfer learning dependencies across tasks in a dictionary of twenty-six 2D, 2.5D, 3D, and semantic tasks, and exploits it to reduce the demand for labeled data.
Abstract: Do visual tasks have a relationship, or are they unrelated? For instance, could having surface normals simplify estimating the depth of an image? Intuition answers these questions positively, implying existence of a structure among visual tasks. Knowing this structure has notable values; it is the concept underlying transfer learning and provides a principled way for identifying redundancies across tasks, e.g., to seamlessly reuse supervision among related tasks or solve many tasks in one system without piling up the complexity. We proposes a fully computational approach for modeling the structure of space of visual tasks. This is done via finding (first and higher-order) transfer learning dependencies across a dictionary of twenty six 2D, 2.5D, 3D, and semantic tasks in a latent space. The product is a computational taxonomic map for task transfer learning. We study the consequences of this structure, e.g. nontrivial emerged relationships, and exploit them to reduce the demand for labeled data. For example, we show that the total number of labeled datapoints needed for solving a set of 10 tasks can be reduced by roughly 2/3 (compared to training independently) while keeping the performance nearly the same. We provide a set of tools for computing and probing this taxonomical structure including a solver that users can employ to devise efficient supervision policies for their use cases.

Journal ArticleDOI
TL;DR: This study focused on robotic operations in logistics, specifically, on picking objects in unstructured areas using a mobile manipulator configuration using a deep reinforcement learning (DRL) approach.
Abstract: Programming robots to perform complex tasks is a very expensive job. Traditional path planning and control are able to generate point to point collision free trajectories, but when the tasks to be performed are complex, traditional planning and control become complex tasks. This study focused on robotic operations in logistics, specifically, on picking objects in unstructured areas using a mobile manipulator configuration. The mobile manipulator has to be able to place its base in a correct place so the arm is able to plan a trajectory up to an object in a table. A deep reinforcement learning (DRL) approach was selected to solve this type of complex control tasks. Using the arm planner’s feedback, a controller for the robot base is learned, which guides the platform to such a place where the arm is able to plan a trajectory up to the object. In addition the performance of two DRL algorithms ((Deep Deterministic Policy Gradient (DDPG)) and (Proximal Policy Optimisation (PPO)) is compared within the context of a concrete robotic task.

Journal ArticleDOI
01 Mar 2019
TL;DR: A partial offloading approach where the tradeoff between FN energy consumption and task processing delay is considered when estimating the portion to be offloaded to the available devices at the edge of the network by comparing a centralized and a distributed architecture is proposed.
Abstract: Edge computing techniques allow to exploit the devices at the network borders for computing efforts in order to reduce centralized cloud requests. A fog network is a feasible solution for implementing edge computing services. Within this scenario, the deployed fog nodes (FNs) are able to offload different portions of a single task to the available nodes to be processed at the network edge. However, to partially offload, FNs consume an extra amount of energy for transmission and reception of the tasks while saving energy by not processing the whole task on their own. Moreover, offloading requires an extra transmission and reception time to the task processing time. In this paper, the focus is on a partial offloading approach where the tradeoff between FN energy consumption and task processing delay is considered when estimating the portion to be offloaded to the available devices at the edge of the network by comparing a centralized and a distributed architecture. Simulation results demonstrate the effectiveness of the proposed estimation solutions in terms of FN energy consumption, average task delay, and network lifetime.

Proceedings ArticleDOI
01 Sep 2019
TL;DR: This work presents the Talk2Car dataset, which is the first object referral dataset that contains commands written in natural language for self-driving cars, and provides a detailed comparison with related datasets such as ReferIt, RefCOCO, Ref COCO+, RefC OCOg, Cityscape-Ref and CLEVR-Ref.
Abstract: A long-term goal of artificial intelligence is to have an agent execute commands communicated through natural language. In many cases the commands are grounded in a visual environment shared by the human who gives the command and the agent. Execution of the command then requires mapping the command into the physical visual space, after which the appropriate action can be taken. In this paper we consider the former. Or more specifically, we consider the problem in an autonomous driving setting, where a passenger requests an action that can be associated with an object found in a street scene. Our work presents the Talk2Car dataset, which is the first object referral dataset that contains commands written in natural language for self-driving cars. We provide a detailed comparison with related datasets such as ReferIt, RefCOCO, RefCOCO+, RefCOCOg, Cityscape-Ref and CLEVR-Ref. Additionally, we include a performance analysis using strong state-of-the-art models. The results show that the proposed object referral task is a challenging one for which the models show promising results but still require additional research in natural language processing, computer vision and the intersection of these fields. The dataset can be found on our website: http://macchina-ai.eu/

Journal ArticleDOI
TL;DR: A distributed intermittent communication and task planning framework for mobile robot teams that considers situations where the robot communication capabilities are not sufficient to form reliable and connected networks, while the robots move to accomplish their tasks.
Abstract: In this paper, we develop a distributed intermittent communication and task planning framework for mobile robot teams. The goal of the robots is to accomplish complex tasks, captured by local linear temporal logic formulas, and share the collected information with all other robots and possibly also with a user. Specifically, we consider situations where the robot communication capabilities are not sufficient to form reliable and connected networks, while the robots move to accomplish their tasks. In this case, intermittent communication protocols are necessary that allow the robots to temporarily disconnect from the network in order to accomplish their tasks free of communication constraints. We assume that the robots can only communicate with each other when they meet at common locations in space. Our distributed control framework jointly determines local plans that allow all robots to fulfill their assigned temporal tasks, sequences of communication events that guarantee information exchange infinitely often, and optimal communication locations that minimize a desired distance metric. Simulation results verify the efficacy of the proposed controllers.

Journal ArticleDOI
07 Jan 2019-Symmetry
TL;DR: A scalable vehicle-assisted MEC (SVMEC) paradigm is proposed, which cannot only relieve the resource limitation of MEC but also enhance the scalability of computing services for IoT devices and reduce the cost of using computing resources.
Abstract: The resource limitation of multi-access edge computing (MEC) is one of the major issues in order to provide low-latency high-reliability computing services for Internet of Things (IoT) devices. Moreover, with the steep rise of task requests from IoT devices, the requirement of computation tasks needs dynamic scalability while using the potential of offloading tasks to mobile volunteer nodes (MVNs). We, therefore, propose a scalable vehicle-assisted MEC (SVMEC) paradigm, which cannot only relieve the resource limitation of MEC but also enhance the scalability of computing services for IoT devices and reduce the cost of using computing resources. In the SVMEC paradigm, a MEC provider can execute its users’ tasks by choosing one of three ways: (i) Do itself on local MEC, (ii) offload to the remote cloud, and (iii) offload to the MVNs. We formulate the problem of joint node selection and resource allocation as a Mixed Integer Nonlinear Programming (MINLP) problem, whose major objective is to minimize the total computation overhead in terms of the weighted-sum of task completion time and monetary cost for using computing resources. In order to solve it, we adopt alternative optimization techniques by decomposing the original problem into two sub-problems: Resource allocation sub-problem and node selection sub-problem. Simulation results demonstrate that our proposed scheme outperforms the existing schemes in terms of the total computation overhead.

Proceedings ArticleDOI
11 Sep 2019
TL;DR: This work proposes an efficient approach to exploit a compact but accurate model in a backbone architecture for each instance of all tasks to perform instance-wise dynamic network model selection for multi-task learning.
Abstract: In this work, we consider the problem of instance-wise dynamic network model selection for multi-task learning. To this end, we propose an efficient approach to exploit a compact but accurate model in a backbone architecture for each instance of all tasks. The proposed method consists of an estimator and a selector. The estimator is based on a backbone architecture and structured hierarchically. It can produce multiple different network models of different configurations in a hierarchical structure. The selector chooses a model dynamically from a pool of candidate models given an input instance. The selector is a relatively small-size network consisting of a few layers, which estimates a probability distribution over the candidate models when an input instance of a task is given. Both estimator and selector are jointly trained in a unified learning framework in conjunction with a sampling-based learning strategy, without additional computation steps. We demonstrate the proposed approach for several image classification tasks compared to existing approaches performing model selection or learning multiple tasks. Experimental results show that our approach gives not only outstanding performance compared to other competitors but also the versatility to perform instance-wise model selection for multiple tasks.