scispace - formally typeset
Search or ask a question
Topic

Task (computing)

About: Task (computing) is a research topic. Over the lifetime, 9718 publications have been published within this topic receiving 129364 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Results from four different kinds of category-learning tasks provide strong evidence that human category learning is mediated by multiple, qualitatively distinct systems.
Abstract: Much recent evidence suggests some dramatic differences in the way people learn perceptual categories, depending on exactly how the categories were constructed. Four different kinds of category-learning tasks are currently popular-rule-based tasks, information-integration tasks, prototype distortion tasks, and the weather prediction task. The cognitive, neuropsychological, and neuroimaging results obtained using these four tasks are qualitatively different. Success in rule-based (explicit reasoning) tasks depends on frontal-striatal circuits and requires working memory and executive attention. Success in information-integration tasks requires a form of procedural learning and is sensitive to the nature and timing of feedback. Prototype distortion tasks induce perceptual (visual cortical) learning. A variety of different strategies can lead to success in the weather prediction task. Collectively, results from these four tasks provide strong evidence that human category learning is mediated by multiple, qualitatively distinct systems.

866 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: The proposed Multi-Task Attention Network (MTAN) consists of a single shared network containing a global feature pool, together with a soft-attention module for each task, which allows learning of task-specific feature-level attention.
Abstract: We propose a novel multi-task learning architecture, which allows learning of task-specific feature-level attention. Our design, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with a soft-attention module for each task. These modules allow for learning of task-specific features from the global features, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be trained end-to-end and can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. We evaluate our approach on a variety of datasets, across both image-to-image predictions and image classification tasks. We show that our architecture is state-of-the-art in multi-task learning compared to existing methods, and is also less sensitive to various weighting schemes in the multi-task loss function. Code is available at https://github.com/lorenmt/mtan.

666 citations

Journal ArticleDOI
TL;DR: A multi-level typology of visualization tasks is contributed to address the gap between why and how a visualization task is performed, as well as what the task inputs and outputs are.
Abstract: The considerable previous work characterizing visualization usage has focused on low-level tasks or interactions and high-level tasks, leaving a gap between them that is not addressed. This gap leads to a lack of distinction between the ends and means of a task, limiting the potential for rigorous analysis. We contribute a multi-level typology of visualization tasks to address this gap, distinguishing why and how a visualization task is performed, as well as what the task inputs and outputs are. Our typology allows complex tasks to be expressed as sequences of interdependent simpler tasks, resulting in concise and flexible descriptions for tasks of varying complexity and scope. It provides abstract rather than domain-specific descriptions of tasks, so that useful comparisons can be made between visualization systems targeted at different application domains. This descriptive power supports a level of analysis required for the generation of new designs, by guiding the translation of domain-specific problems into abstract tasks, and for the qualitative evaluation of visualization usage. We demonstrate the benefits of our approach in a detailed case study, comparing task descriptions from our typology to those derived from related work. We also discuss the similarities and differences between our typology and over two dozen extant classification systems and theoretical frameworks from the literatures of visualization, human-computer interaction, information retrieval, communications, and cartography.

655 citations

Proceedings ArticleDOI
Ashvin Nair1, Bob McGrew1, Marcin Andrychowicz1, Wojciech Zaremba1, Pieter Abbeel1 
21 May 2018
TL;DR: This work uses demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm.
Abstract: Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.

590 citations

Journal Article
TL;DR: Experimental results on two real life MTL problems indicate that the proposed algorithms automatically identify subgroups of related tasks whose training data appear to be drawn from similar distributions are more accurate than simpler approaches such as single-task learning, pooling of data across all tasks, and simplified approximations to DP.
Abstract: Consider the problem of learning logistic-regression models for multiple classification tasks, where the training data set for each task is not drawn from the same statistical distribution. In such a multi-task learning (MTL) scenario, it is necessary to identify groups of similar tasks that should be learned jointly. Relying on a Dirichlet process (DP) based statistical model to learn the extent of similarity between classification tasks, we develop computationally efficient algorithms for two different forms of the MTL problem. First, we consider a symmetric multi-task learning (SMTL) situation in which classifiers for multiple tasks are learned jointly using a variational Bayesian (VB) algorithm. Second, we consider an asymmetric multi-task learning (AMTL) formulation in which the posterior density function from the SMTL model parameters (from previous tasks) is used as a prior for a new task: this approach has the significant advantage of not requiring storage and use of all previous data from prior tasks. The AMTL formulation is solved with a simple Markov Chain Monte Carlo (MCMC) construction. Experimental results on two real life MTL problems indicate that the proposed algorithms: (a) automatically identify subgroups of related tasks whose training data appear to be drawn from similar distributions; and (b) are more accurate than simpler approaches such as single-task learning, pooling of data across all tasks, and simplified approximations to DP.

582 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202210
2021695
2020712
2019784
2018721
2017565