scispace - formally typeset
Search or ask a question
Topic

TEC

About: TEC is a research topic. Over the lifetime, 5119 publications have been published within this topic receiving 84696 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel technique is presented for retrieving the electron density height profile from three types of measurements: ionosonde (foF2, foE, M3000f2, hmf2), TEC (GPS-based), and O+-H+ ion transition level.
Abstract: Ground-based ionosphere sounding measurements alone are incapable of reliably modeling the topside electron density distribution above the F layer peak density height. Such information can be derived from Global Positioning System (GPS)-based total electron content (TEC) measurements. A novel technique is presented for retrieving the electron density height profile from three types of measurements: ionosonde (foF2, foE, M3000F2, hmf2), TEC (GPS-based), and O+-H+ ion transition level. The method employs new formulae based on Chapman, sech-squared, and exponential ionosphere profilers to construct a system of equations, the solution of which system provides the unknown ion scale heights, sufficient to construct a unique electron density profile at the site of measurements. All formulae are based on the assumption of diffusive equilibrium with constant scale height for each ion species. The presented technique is most suitable for middle- and high-geomagnetic latitudes and possible applications include: development, evaluation, and improvement of theoretical and empirical ionospheric models, development of similar reconstruction methods utilizing low-earth-orbiting satellite measurements of TEC, operational reconstruction of the electron density on a real-time basis, etc.

134 citations

Journal ArticleDOI
TL;DR: In this article, the plasmaspheric electron content is directly estimated from the global positioning system (GPS) data onboard JASON-1 Satellite for the first time, and a global comparison between the two independent measurements was performed by dividing the data into three different regions; equatorial, mid-and high-latitude regions.

134 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated how the rise rate and decay rate of solar flares affect the thermosphere and ionosphere responses to them, and they conducted model simulations and data analysis for two flares of similar magnitude (X6.2 and X5.4).
Abstract: We investigated how the rise rate and decay rate of solar flares affect the thermosphere and ionosphere responses to them. Model simulations and data analysis were conducted for two flares of similar magnitude (X6.2 and X5.4) that had the same location on the solar limb, but the X6.2 flare had longer rise and decay times. Simulated total electron content (TEC) enhancements from the X6.2 and X5.4 flares were 6 total electron content units (TECU) and approximately 2 TECU, and the simulated neutral density enhancements were approximately 15% -20% and approximately 5%, respectively, in reasonable agreement with observations. Additional model simulations showed that for idealized flares with the same magnitude and location, the thermosphere and ionosphere responses changed significantly as a function of rise and decay rates. The Neupert Effect, which predicts that a faster flare rise rate leads to a larger EUV enhancement during the impulsive phase, caused a larger maximum ion production enhancement. In addition, model simulations showed that increased E x B plasma transport due to conductivity increases during the flares caused a significant equatorial anomaly feature in the electron density enhancement in the F region but a relatively weaker equatorial anomaly feature in TEC enhancement, owing to dominant contributions by photochemical production and loss processes. The latitude dependence of the thermosphere response correlated well with the solar zenith angle effect, whereas the latitude dependence of the ionosphere response was more complex, owing to plasma transport and the winter anomaly.

133 citations

Journal ArticleDOI
TL;DR: In this article, the total electron content (TEC) of ground-based receivers of the global positioning system (GPS) in the Indian Ocean area of the 26 December 2004 Mw 9.3 Sumatra earthquake was analyzed.
Abstract: [1] Tsunami ionospheric disturbances (TIDs) of the 26 December 2004 Mw 9.3 Sumatra earthquake are detected by the total electron content (TEC) of ground-based receivers of the global positioning system (GPS) in the Indian Ocean area. It is found that the tsunami waves triggered atmospheric disturbances near the sea surface, which then traveled upward with an average velocity of about 730 m/s (2700 km/hr) into the ionosphere and significantly disturbed the electron density within it. Results further show that the TIDs, which have maximum height of about 8.6–17.2 km, periods of 10–20 min, and horizontal wavelengths of 120–240 km, travel away from the epicenter with an average horizontal speed of about 700 km/hr (190 m/s) in the ionosphere.

129 citations

Journal ArticleDOI
TL;DR: A technique based on microwave passive polarimetry for the estimates of ionospheric Faraday rotation for microwave remote sensing of Earth surfaces and TEC and differential path delay for applications including microwave radiometry and scatterometry of ocean salinity and soil moisture as well as satellite altimetry at sea surface height is described.
Abstract: A technique based on microwave passive polarimetry for the estimates of ionospheric Faraday rotation for microwave remote sensing of Earth surfaces is described. Under the assumption of azimuth symmetry for the surfaces under investigation, it is possible to estimate the ionospheric Faraday rotation from the third Stokes parameter of microwave radiation. An error analysis shows that the Faraday rotation can be estimated with an accuracy of better than 1/spl deg/ with a space-based L-band system, and the residual correction errors of linearly polarized brightness temperatures can be less than 0.1 K. It is suggested that the estimated Faraday rotation angle can be further utilized to derive the ionospheric total electron content (TEC) with an accuracy of about 1 TECU=10/sup 16/ electrons-m/sup -2/ which will yield 1 mm accuracy for the estimate of an ionospheric differential delay at the Ku-band. Therefore, this technique can potentially provide accurate estimates of ionospheric Faraday rotation, TEC and differential path delay for applications including microwave radiometry and scatterometry of ocean salinity and soil moisture as well as satellite altimetry at sea surface height. A conceptual design applicable to real aperture and aperture synthesis radiometers is described for the measurements of the third Stokes parameter.

129 citations


Network Information
Related Topics (5)
Global Positioning System
53.7K papers, 697.1K citations
79% related
Solar wind
26.1K papers, 780.2K citations
75% related
Radar
91.6K papers, 1M citations
75% related
Atmosphere
30.8K papers, 737.8K citations
72% related
Frequency domain
53.8K papers, 701.3K citations
69% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023303
2022578
2021284
2020321
2019293
2018272