scispace - formally typeset
Search or ask a question
Topic

Telecommunications network

About: Telecommunications network is a research topic. Over the lifetime, 23001 publications have been published within this topic receiving 327065 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated, and by employing coding at the nodes, which the work refers to as network coding, bandwidth can in general be saved.
Abstract: We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a point-to-point communication network on which a number of information sources are to be multicast to certain sets of destinations. We assume that the information sources are mutually independent. The problem is to characterize the admissible coding rate region. This model subsumes all previously studied models along the same line. We study the problem with one information source, and we have obtained a simple characterization of the admissible coding rate region. Our result can be regarded as the max-flow min-cut theorem for network information flow. Contrary to one's intuition, our work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated. Rather, by employing coding at the nodes, which we refer to as network coding, bandwidth can in general be saved. This finding may have significant impact on future design of switching systems.

8,533 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: This work reviews several recent results on estimation, analysis, and controller synthesis for NCSs, and addresses channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts.
Abstract: Networked control systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators, and controllers is supported by a shared communication network. We review several recent results on estimation, analysis, and controller synthesis for NCSs. The results surveyed address channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts. The results are presented in a tutorial fashion, comparing alternative methodologies

3,748 citations

Journal ArticleDOI
01 Jan 2015
TL;DR: This paper presents an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications, and presents the key building blocks of an SDN infrastructure using a bottom-up, layered approach.
Abstract: The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

3,589 citations

Journal ArticleDOI
TL;DR: A calculus is developed for obtaining bounds on delay and buffering requirements in a communication network operating in a packet switched mode under a fixed routing strategy, and burstiness constraints satisfied by the traffic that exits the element are derived.
Abstract: A calculus is developed for obtaining bounds on delay and buffering requirements in a communication network operating in a packet switched mode under a fixed routing strategy. The theory developed is different from traditional approaches to analyzing delay because the model used to describe the entry of data into the network is nonprobabilistic. It is supposed that the data stream entered into the network by any given user satisfies burstiness constraints. A data stream is said to satisfy a burstiness constraint if the quantity of data from the stream contained in any interval of time is less than a value that depends on the length of the interval. Several network elements are defined that can be used as building blocks to model a wide variety of communication networks. Each type of network element is analyzed by assuming that the traffic entering it satisfies bursting constraints. Under this assumption, bounds are obtained on delay and buffering requirements for the network element; burstiness constraints satisfied by the traffic that exits the element are derived. >

2,049 citations

Journal ArticleDOI
TL;DR: The authors propose a computationally simple approximate expression to provide a unified metric to represent the effective bandwidth used by connections and the corresponding effective load of network links, which can then be used for efficient bandwidth management, routing, and call control procedures aimed at optimizing network usage.
Abstract: The authors propose a computationally simple approximate expression for the equivalent capacity or bandwidth requirement of both individual and multiplexed connections, based on their statistical characteristics and the desired grade-of-service (GOS). The purpose of such an expression is to provide a unified metric to represent the effective bandwidth used by connections and the corresponding effective load of network links. These link metrics can then be used for efficient bandwidth management, routing, and call control procedures aimed at optimizing network usage. While the methodology proposed can provide an exact approach to the computation of the equivalent capacity, the associated complexity makes it infeasible for real-time network traffic control applications. Hence, an approximation is required. The validity of the approximation developed is verified by comparison to both exact computations and simulation results. >

1,442 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
92% related
Wireless network
122.5K papers, 2.1M citations
92% related
Wireless
133.4K papers, 1.9M citations
91% related
Server
79.5K papers, 1.4M citations
91% related
Node (networking)
158.3K papers, 1.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202377
2022172
2021483
2020863
2019846
2018871