scispace - formally typeset
Search or ask a question
Topic

Tempering

About: Tempering is a research topic. Over the lifetime, 15598 publications have been published within this topic receiving 124468 citations.


Papers
More filters
Book
01 Jan 1982
TL;DR: In this article, the authors studied the effects of alloying elements in iron-carbon alloys and the formation of martensite, bainite reaction and acicular ferrite reaction.
Abstract: Iron and its interstitial solid solutions * The strengthening of iron and its alloys * The iron-carbon equilibrium diagram and plain carbon steels * The effects of alloying elements in iron-carbon alloys * Formation of martensite * The bainite reaction * Acicular ferrite * The heat treatment of steels - hardenability * The tempering of martensite * Commercial Steels: New material to include Nanostructured Steels, Steels for the Energy and Automobile Industries * The embrittlement and fracture of steels * Stainless steel * Weld microstructures * Modelling of microstructure and properties *

1,613 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used regression analysis to determine the correlation of the yield strength and the tensile strength to the diamond pyramid hardness values for over 150 nonaustenitic, hypoeutectoid steels.
Abstract: Hardness values as well as yield and tensile strength values were compiled for over 150 nonaustenitic, hypoeutectoid steels having a wide range of compositions and a variety of microstructures. The microstructures include ferrite, pearlite, martensite, bainite, and complex multiphase structures. The yield strength of the steels ranged from approximately 300 MPa to over 1700 MPa. Tensile strength varied over the range of 450-2350 MPa. Regression analysis was used to determine the correlation of the yield strength and the tensile strength to the diamond pyramid hardness values for these steels. Both the yield strength and tensile strength of the steels exhibited a linear correlation with the hardness over the entire range of strength values. Empirical relationships are provided that enable the estimation of strength from a bulk hardness measurement. A weak effect of strain-hardening potential on the hardness-yield strength relationship was also observed.

701 citations

Journal ArticleDOI
08 Sep 2017-Science
TL;DR: The deformed and partitioned (D and P) process produced dislocation hardening but retained high ductility, both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation.
Abstract: A wide variety of industrial applications require materials with high strength and ductility. Unfortunately, the strategies for increasing material strength, such as processing to create line defects (dislocations), tend to decrease ductility. We developed a strategy to circumvent this in inexpensive, medium manganese steel. Cold rolling followed by low-temperature tempering developed steel with metastable austenite grains embedded in a highly dislocated martensite matrix. This deformed and partitioned (D and P) process produced dislocation hardening but retained high ductility, both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation. The D and P strategy should apply to any other alloy with deformation-induced martensitic transformation and provides a pathway for the development of high-strength, high-ductility materials.

673 citations

Journal ArticleDOI
TL;DR: In this paper, a novel concept for the heat treatment of martensite, different to customary quenching and tempering, is described, which can be used to generate microstructures with martensites/austenite combinations giving attractive properties.
Abstract: A novel concept for the heat treatment of martensite, different to customary quenching and tempering, is described. This involves quenching to below the martensite-start temperature and directly ageing, either at, or above, the initial quench temperature. If competing reactions, principally carbide precipitation, are suppressed by appropriate alloying, the carbon partitions from the supersaturated martensite phase to the untransformed austenite phase, thereby increasing the stability of the residual austenite upon subsequent cooling to room temperature. This novel treatment has been termed ‘quenching and partitioning’ (Q&P), to distinguish it from quenching and tempering, and can be used to generate microstructures with martensite/austenite combinations giving attractive properties. Another approach that has been used to produce austenite-containing microstructures is by alloying to suppress carbide precipitation during the formation of bainitic structures, and interesting comparisons can be made between the two approaches. Moreover, formation of carbide-free bainite during the Q&P partitioning treatment may be a reaction competing for carbon, although this could also be used constructively as an additional stage of Q&P partitioning to form part of the final microstructure. Amongst the ferrous alloys examined so far are medium carbon bar steels and low carbon formable TRIP-assisted sheet steels.

618 citations

Book
30 Aug 2005
TL;DR: In this article, the authors present a tutorial for steel making, alloying, microstructure, deformation, fracture and properties of major steel types ranging from low-carbon sheet steels, pearlitic rail and wire steels to quench and tempered medium-and high-carbon martensitic steels.
Abstract: In this Second Edition, new information and references are integrated into chapters. Emphasis is still on processing, alloying, microstructure, deformation, fracture and properties of major steel types ranging from low-carbon sheet steels, pearlitic rail and wire steels, to quench and tempered medium- and high-carbon martensitic steels. Microstructural aspects of steelmaking, hardenability, tempering, surface hardening, and embrittlement phenomena are updated, and chapters on stainless and tool steels remain in the Second edition. The work is intended to be tutorial and is an essential state-of-the-art reference for anyone that makes, uses, studies and designs with steel.

613 citations


Network Information
Related Topics (5)
Microstructure
148.6K papers, 2.2M citations
87% related
Alloy
171.8K papers, 1.7M citations
87% related
Welding
206.5K papers, 1.1M citations
83% related
Grain boundary
70.1K papers, 1.5M citations
82% related
Ultimate tensile strength
129.2K papers, 2.1M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023357
2022668
2021426
2020720
2019906
2018864