scispace - formally typeset
Search or ask a question
Topic

Temporal discretization

About: Temporal discretization is a research topic. Over the lifetime, 1446 publications have been published within this topic receiving 30866 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper is concerned with the mathematical structure of the immersed boundary (IB) method, which is intended for the computer simulation of fluid–structure interaction, especially in biological fluid dynamics.
Abstract: This paper is concerned with the mathematical structure of the immersed boundary (IB) method, which is intended for the computer simulation of fluid–structure interaction, especially in biological fluid dynamics. The IB formulation of such problems, derived here from the principle of least action, involves both Eulerian and Lagrangian variables, linked by the Dirac delta function. Spatial discretization of the IB equations is based on a fixed Cartesian mesh for the Eulerian variables, and a moving curvilinear mesh for the Lagrangian variables. The two types of variables are linked by interaction equations that involve a smoothed approximation to the Dirac delta function. Eulerian/Lagrangian identities govern the transfer of data from one mesh to the other. Temporal discretization is by a second-order Runge–Kutta method. Current and future research directions are pointed out, and applications of the IB method are briefly discussed. Introduction The immersed boundary (IB) method was introduced to study flow patterns around heart valves and has evolved into a generally useful method for problems of fluid–structure interaction. The IB method is both a mathematical formulation and a numerical scheme. The mathematical formulation employs a mixture of Eulerian and Lagrangian variables. These are related by interaction equations in which the Dirac delta function plays a prominent role. In the numerical scheme motivated by the IB formulation, the Eulerian variables are defined on a fixed Cartesian mesh, and the Lagrangian variables are defined on a curvilinear mesh that moves freely through the fixed Cartesian mesh without being constrained to adapt to it in any way at all.

4,164 citations

Journal ArticleDOI
TL;DR: In this article, direct numerical simulation (DNS) of turbulent flows has been reviewed and the complementary nature of experiments and computations in turbulence research has been illustrated, as well as how DNS has impacted turbulence modeling and provided further insight into the structure of turbulent boundary layers.
Abstract: ▪ Abstract We review the direct numerical simulation (DNS) of turbulent flows. We stress that DNS is a research tool, and not a brute-force solution to the Navier-Stokes equations for engineering problems. The wide range of scales in turbulent flows requires that care be taken in their numerical solution. We discuss related numerical issues such as boundary conditions and spatial and temporal discretization. Significant insight into turbulence physics has been gained from DNS of certain idealized flows that cannot be easily attained in the laboratory. We discuss some examples. Further, we illustrate the complementary nature of experiments and computations in turbulence research. Examples are provided where DNS data has been used to evaluate measurement accuracy. Finally, we consider how DNS has impacted turbulence modeling and provided further insight into the structure of turbulent boundary layers.

1,572 citations

Journal ArticleDOI
TL;DR: It is shown that the combination of the phase-field model and local adaptive refinement provides an effective method for simulating fracture in three dimensions.

1,260 citations

Journal ArticleDOI
TL;DR: A hierarchy of computational approaches that range from semi-empirical schemes that estimate the noise sources using mean-flow and turbulence statistics, to high-fidelity unsteady flow simulations that resolve the sound generation process by direct application of the fundamental conservation principles is discussed in this paper.

520 citations

Journal ArticleDOI
TL;DR: A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries is presented.

500 citations


Network Information
Related Topics (5)
Numerical analysis
52.2K papers, 1.2M citations
88% related
Partial differential equation
70.8K papers, 1.6M citations
84% related
Boundary value problem
145.3K papers, 2.7M citations
84% related
Finite element method
178.6K papers, 3M citations
82% related
Iterative method
48.8K papers, 1.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202229
2021130
2020110
201981
2018110