scispace - formally typeset
Search or ask a question
Topic

Terpene

About: Terpene is a research topic. Over the lifetime, 2208 publications have been published within this topic receiving 51480 citations. The topic is also known as: terpenes.


Papers
More filters
Journal ArticleDOI
TL;DR: The genomic, molecular and biochemical underpinnings of the large chemical space of conifer oleoresin terpenes and volatiles are highlighted and biosynthesis of terpene diversity in conifers is achieved through a system of biochemical radiation and metabolic grids.
Abstract: Conifers have evolved complex oleoresin terpene defenses against herbivores and pathogens. In co-evolved bark beetles, conifer terpenes also serve chemo-ecological functions as pheromone precursors, chemical barcodes for host identification, or nutrients for insect-associated microbiomes. We highlight the genomic, molecular and biochemical underpinnings of the large chemical space of conifer oleoresin terpenes and volatiles. Conifer terpenes are predominantly the products of the conifer terpene synthase (TPS) gene family. Terpene diversity is increased by cytochromes P450 of the CYP720B class. Many conifer TPS are multiproduct enzymes. Multisubstrate CYP720B enzymes catalyse multistep oxidations. We summarise known terpenoid gene functions in various different conifer species with reference to the annotated terpenoid gene space in a spruce genome. Overall, biosynthesis of terpene diversity in conifers is achieved through a system of biochemical radiation and metabolic grids. Expression of TPS and CYP720B genes can be specific to individual cell types of constitutive or traumatic resin duct systems. Induced terpenoid transcriptomes in resin duct cells lead to dynamic changes of terpene composition and quantity to fend off herbivores and pathogens. While terpenoid defenses have contributed much to the evolutionary success of conifers, under new conditions of climate change, these defences may become inconsequential against range-expanding forest pests.

108 citations

Journal ArticleDOI
TL;DR: Limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms, indicating that terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops
Abstract: Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens.

108 citations

Journal ArticleDOI
TL;DR: Perillic acids and dihydroperillic acid, the two major circulating metabolites of limonene in the rat, are more potent inhibitors of protein isoprenylation than is limonenes, and perillic Acid is also a more potent inhibitor of cell growth.
Abstract: Limonene has been shown to be an effective, nontoxic chemopreventive and chemotherapeutic agent in chemically induced rat mammary-cancer models. The present study characterized circulating metabolites of limonene in female rats and determined their effects on cell growth. Metabolism of limonene was analyzed in plasma extracts by gas chromatography. Rapid conversion of limonene to two major metabolites was detected. These metabolites comprised more than 80% of the circulating limonene-derived material at 1 h after administration and thereafter, whereas limonene itself accounted for only 15%. The metabolites were characterized by mass spectroscopy and infrared spectroscopy. The probable structures were synthesized, and identities were confirmed by comparison of retention times and mass spectra. The two major circulating metabolites of limonene were found to be perillic acid and dihydroperillic acid. We have previously reported that limonene, perillic acid, and dihydroperillic acid inhibit the posttranslational isoprenylation of p21ras and other 21- to 26-kDa cell-growth-associated proteins in NIH3T3 cells and in mammary epithelial cells. In the present study, perillic acid was found to inhibit cell growth in a dose-dependent manner. Thus, perillic acid and dihydroperillic acid, the two major circulating metabolites of limonene in the rat, are more potent inhibitors of protein isoprenylation than is limonene, and perillic acid is also a more potent inhibitor of cell growth. These data raise the possibility that the antitumor effects of limonene in vivo may be mediated via perillic acid and, perhaps, other metabolites.

108 citations

Journal ArticleDOI
TL;DR: Findings suggest that Pinus halepensis may respond to an environment characterized by increasing soil deposition, by allocating carbon resources to the synthesis of terpene defense metabolites without growth reduction, as well as possible ecological explanations on the effect of soil type for these latter two species.
Abstract: Fertilizer effects on terpene production have been noted in numerous reports. In contrast, only a few studies have studied the response of leaf terpene content to naturally different soil fertility levels. Terpene content, as determined by gas chromatography/mass spectrometry/flame ionization detector, and growth of Pinus halepensis, Rosmarinus officinalis, and Cistus albidus were studied on calcareous and siliceous soils under field conditions. The effect of nitrogen (N) and extractable phosphorus (PE) from these soils on terpenes was also investigated since calcareous soils mainly differ from siliceous soils in their higher nutrient loadings. Rich terpene mixtures were detected. Twenty-one terpenes appeared in leaf extracts of R. officinalis and C. albidus and 20 in P. halepensis. Growth of all species was enhanced on calcareous soils, while terpene content showed a species-specific response to soil type. The total monoterpene content of P. halepensis and that of some major compounds (e.g., δ-terpinene) were higher on calcareous than on siliceous soils. A significant and positive relationship was found between concentration of N and PE and leaf terpene content of this species. These findings suggest that P. halepensis may respond to an environment characterized by increasing soil deposition, by allocating carbon resources to the synthesis of terpene defense metabolites without growth reduction. Results obtained for R. officinalis showed high concentrations of numerous major monoterpenes (e.g., myrcene, camphor) in plants growing on calcareous soils, while α-pinene, β-caryophyllene, and the total sesquiterpene content were higher on siliceous soils. Finally, only alloaromadendrene and δ-cadinene of C. albidus showed higher concentrations on siliceous soils. Unlike P. halepensis, soil nutrients were not involved in terpene variation in calcareous and siliceous soils of these two shrub species. Possible ecological explanations on the effect of soil type for these latter two species as well as the ecological explanation of rich terpene mixtures are discussed.

106 citations

Journal ArticleDOI
TL;DR: It is argued that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles under perturbation of metabolism in stressed plants as well as under certain developmental stages.
Abstract: Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

106 citations


Network Information
Related Topics (5)
Indole test
19.9K papers, 318K citations
91% related
Phenols
4.7K papers, 218.4K citations
91% related
Ketone
28.2K papers, 436.2K citations
90% related
Aldehyde
29K papers, 479.2K citations
90% related
Bicyclic molecule
29.5K papers, 451.2K citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023400
2022834
202190
202093
201970
201895