scispace - formally typeset
Search or ask a question
Topic

Terrane

About: Terrane is a research topic. Over the lifetime, 11025 publications have been published within this topic receiving 442596 citations. The topic is also known as: tectonostratigraphic terrane.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper reviewed and reevaluated these hypotheses in light of new data from Tibet including the distribution of major tectonic boundaries and suture zones, basement rocks and their sedimentary covers, magmatic suites, and detrital zircon constraints from Paleozoic metasedimentary rocks.

964 citations

Journal ArticleDOI
TL;DR: A thorough survey of over 90 granulite terranes or occurrences reveals that over 50% of them record P-T conditions outside the 7.5 ± 1 kbar and 800 ± 50 °C average granulites regime preferred by many authors as discussed by the authors.
Abstract: Although many recent reviews emphasize a uniformity in granulite pressure–temperature (P–T) conditions and paths, granulites in reality preserve a spectrum of important petrogenetic features which indicate diversity in their modes of formation. A thorough survey of over 90 granulite terranes or occurrences reveals that over 50% of them record P–T conditions outside the 7.5 ± 1 kbar and 800 ± 50 °C average granulite regime preferred by many authors. In particular, an increasing number of very high temperature (900−1000 °C) terranes are being recognized, both on the basis of distinctive mineral assemblages and geothermobarometry. Petrogenetic grid and geothermobarometric approaches to the determination and interpretation of P–T histories are both evaluated within the context of reaction textures to demonstrate that the large range in P–T conditions is indeed real, and that both near-isothermal decompression (ITD) and near-isobaric cooling (IBC) P–T paths are important. Amphibolite–granulite transitions promoted by the passage of CO2-rich fluids, as observed in southern India and Sri Lanka, are exceptional and not representative of fluid-related processes in the majority of terranes. It is considered, on the contrary, that fluid-absent conditions are typical of most granulites at or near the time of their recorded thermal maxima.ITD granulites are interpreted to have formed in crust thickened by collision, with magmatic additions being an important extra heat source. Erosion alone is not, however, considered to be the dominant post-collisional thinning process. Instead, the ITD paths are generated during more rapid thinning (1−2 mm/yr exposure) related to tectonic exhumation during moderate-rate or waning extension. IBC granulites may have formed in a variety of settings. Those which show anticlockwise P–T histories are interpreted to have formed in and beneath areas of voluminous magmatic accretion, with or without additional crustal extension. IBC granulites at shallow levels (< 5 kbar) may also be formed during extension of normal thickness crust, but deeper-level IBC requires more complex models. Many granulites exhibiting IBC at deep crustal levels may have formed in thickened crust which underwent very rapid (5 mm/yr) extensional thinning subsequent to collision. It is suggested that the preservation of IBC paths rather than ITD paths in many granulites is primarily related to the rate and timescale of extensional thinning of thickened crust, and that hybrid ITD to IBC paths should also be observed.Most IBC granulites, and probably many ITD granulites, have not been exposed at the Earth's surface as a result of the tectonic episodes which produced them, but have resided in the middle and lower crust for long periods of time (100−2000 Ma) following these events. The eventual exhumation of most granulite terranes only occur through their incorporation in later tectonic and magmatic events unrelated to their formation.

932 citations

Journal ArticleDOI
TL;DR: The detachment terranes are relatively young features, formed late in the geological evolution of these bodies, and are only the last in a succession of low-angle normal faults that sliced through the upper crust at the upward terminations of major, shallow-dipping, ductile shear zones in the Cordilleran orogen as mentioned in this paper.

923 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a synthesis of crustal evolution in SE China based on extensive Nd and Sr isotopic data compiled from the literature for intrusive granitoids, volcanic, sedimentary and metamorphic rocks from three major tectonic units of SE China: Dabie, Yangtze and Cathaysia.

881 citations

Journal ArticleDOI
TL;DR: In this paper, the authors classify orogens into retreating and advancing types, based on their kinematic framework and resulting geological character, including the supra-subduction zone forearc, magmatic arc and back-arc components.
Abstract: Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero.

874 citations


Network Information
Related Topics (5)
Subduction
22.4K papers, 1.1M citations
93% related
Sedimentary rock
30.3K papers, 746.5K citations
93% related
Zircon
23.7K papers, 786.6K citations
92% related
Lithosphere
14.5K papers, 723.8K citations
92% related
Basalt
18.6K papers, 805.1K citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023360
2022725
2021413
2020420
2019407
2018344