scispace - formally typeset
Search or ask a question
Topic

Terrane

About: Terrane is a research topic. Over the lifetime, 11025 publications have been published within this topic receiving 442596 citations. The topic is also known as: tectonostratigraphic terrane.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that Alaska and Yukon are divisible into a series of geological belts, including the northerly east-west-trending Arctic Alaska, the central southwest-tending Ruby, the south-east-to-mid-Cretaceous Dillinger belt, and the southeast-thrending Yukon-Tanana belt.

205 citations

Journal ArticleDOI
TL;DR: In this article, the authors interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench ridge-ridge-trenches (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate.
Abstract: Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ocean in Paleocene– Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska–British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade Range just after 50 Ma, related to slab-window magmatism, (5) birth of the Queen Charlotte transform margin at ca. 50 Ma, (6) extensional exhumation of high-grade metamorphic terranes and development of core complexes in British Columbia, Idaho, and Washington, and extensional collapse of the Cordilleran foreland fold-and-thrust belt in Alberta, Montana, and Idaho after 50 Ma related to initiation of the transform margin, (7) enigmatic 53–45 Ma magmatism associated with extension from Montana to the Yukon Territory as related to slab breakup and the formation of a slab window, (8) right-lateral margin-parallel strike-slip faulting in southern and western Alaska during Late Cretaceous and Paleocene time, which cannot be explained by Farallon convergence vectors, and (9) simultaneous changes in Pacific-Farallon and Pacific-Kula plate motions concurrent with demise of the Kula-Resurrection Ridge.

205 citations

Journal ArticleDOI
Anthi Liati1, Dieter Gebauer1
TL;DR: Ion microprobe (SHRIMP) dating was carried out on different zircon domains from metamorphic rocks of the HP-HT terrane of central Rhodope, northern Greece, to constrain the timing of prograde and retrograde stages within a single tectono-metamorphic cycle as mentioned in this paper.
Abstract: Ion microprobe (SHRIMP) dating was carried out on different zircon domains from metamorphic rocks of the HP-HT terrane of central Rhodope, northern Greece, to constrain the timing of prograde and retrograde stages within a single tectono-metamorphic cycle. A well determined P-T-t(relative) path for the metamorphic rocks of this terrane was used as a petrological basis for the geochronological investigations. Ion microprobe work was assisted by cathodoluminescence (CL) images of the zircon crystals. The geochronological results revealed that Hercynian continental crust was subducted during the Eocene. Several stages of the Eocene tectono-metamorphic cycle – including both the prograde and retrograde parts of the P-T path above ca 300 °C, 0.3 GPa – were dated using zircons from the following rock types: (1) A deformed quartz vein probably formed at ca 300 °C, 0.3 GPa. Zircons in this vein precipitated from a hydrothermal fluid; they yielded an age of 45.3 ± 0.9 Ma which corresponds to the time of a low-T prograde stage of metamorphism. (2) In kyanite eclogites, zircons were entirely reset during eclogite-facies metamorphism. Resetting was very probably enhanced by the presence of fluids derived by H2O liberating reactions close to the P-peak. They yielded an age of 42.2 ± 0.9 Ma. (3) Orthogneisses surrounding the kyanite eclogites contained zircons with magmatic oscillatory zoned cores, which yielded Hercynian ages of 294 ± 8 Ma (age of granitic protolith formation), whereas CL-bright, metamorphic rims yielded, like the eclogite zircons, ages of 42.0 ± 1.1 Ma. Therefore, both the eclogites and orthogneisses are interpreted to have approached maximum depth at around 42 Ma. (4) In a leucosome of a migmatized orthogneiss, oscillatory zoned zircons yielded an age of 40.0 ± 1.0 Ma. At this time the rocks reached maximum temperatures during early decompression. (5) A late pegmatite crosscutting the schistosity of amphibolites contained oscillatory zoned zircons that yielded a crystallization age of 36.1 ± 1.2 Ma. Thus, the whole tectono-metamorphic cycle above ca 300 °C, 0.3 GPa lasted from 45.3 ± 0.9 Ma to 36.1 ± 1.2 Ma, that is 9.2 Ma with an extreme error value of 2.1 Ma. Based on combined SHRIMP and petrological data, the average rates of heating and burial during subduction (above ca 300 °C, 0.3 GPa) are >94 °C/Ma and >15 mm/a, respectively. Rates of cooling and exhumation (also above 300 °C, 0.3 GPa) are calculated to be >128° C/Ma and >7.7 mm/a. The Eocene age of metamorphism in central Rhodope implies that the terrane of, at least, central Rhodope and the Cyclades very probably was part of the same continental crust.

205 citations

Journal ArticleDOI
TL;DR: Using SHRIMP zircon ages, the authors in this paper found that the North Tianshan orogenic belt in Kyrgyzstan consists predominantly of Neoproterozoic to early Paleozoic assemblages and tectonically interlayered older Precambrian crystalline complexes and formed during early PDEs and collisional events.

205 citations

Journal ArticleDOI
TL;DR: In this article, the authors used single zircon evaporation and vapour digestion techniques to obtain remarkably uniform 207Pb/206Pb and UPb ages of 3544 ± 3 to 3547 ± 3 Ma for felsic rocks mapped as Theespruit in the Steynsdorp Anticline of the southeastern BGB, some 100 Ma older than all other dated greenstone units.

204 citations


Network Information
Related Topics (5)
Subduction
22.4K papers, 1.1M citations
93% related
Sedimentary rock
30.3K papers, 746.5K citations
93% related
Zircon
23.7K papers, 786.6K citations
92% related
Lithosphere
14.5K papers, 723.8K citations
92% related
Basalt
18.6K papers, 805.1K citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023360
2022725
2021413
2020420
2019407
2018344