scispace - formally typeset
Search or ask a question
Topic

Terrane

About: Terrane is a research topic. Over the lifetime, 11025 publications have been published within this topic receiving 442596 citations. The topic is also known as: tectonostratigraphic terrane.


Papers
More filters
Journal ArticleDOI
TL;DR: In the Namaqua-Natal belt, the age of the granitoid fabric is known to be at least 1.03-1.04-Ga.

196 citations

Journal ArticleDOI
TL;DR: In this paper, the authors test the utility of this approach using integrated geochemical, geochronological, and sedimentological data from the Himalayan successions of northern India and relatively undeformed, age-equivalent succession of the Indian craton.

196 citations

Journal ArticleDOI
TL;DR: In this paper, the Raohe Complex was found to have a weighted mean age of 167.1 ± 1.5 Ma and a concordant zircon weighted mean ages of 128.2 and 129.2 µm.
Abstract: The Nadanhada Terrane, located along the eastern margin of Eurasia, contains a typical accretionary complex related to paleo-Pacific plate subduction-accretion. The Yuejinshan Complex is the first stage accretion complex that consists of meta-clastic rocks and metamafic-ultramafic rocks, whereas the Raohe Complex forms the main parts of the terrane and consists of limestone, bedded chert, and mafic-ultramafic rocks embedded as olistolith blocks in a weakly sheared matrix of clastic meta-sedimentary rocks. Geochemical data indicate that the Yuejinshan metabasalts have normal mid-ocean ridge basalt (N-MORB) affinity, whereas the Raohe basaltic pillow lavas have an affinity to ocean island basalts (OIB). Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon analyses of gabbro in the Raohe Complex yield a weighted mean 206Pb/238U zircon age of 216 ± 5 Ma, whereas two samples of granite intruded into the complex yield weighted mean 206Pb/238U zircon ages of 128 ± 2 and 129 ± 2 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) U-Pb zircon analyses of basaltic pillow lava in the Raohe Complex define a weighted mean age of 167 ± 1 Ma. Two sandstone samples in the Raohe Complex record younger concordant zircon weighted mean ages of 167 ± 17 and 137 ± 3 Ma. These new data support the view that accretion of the Raohe Complex was between 170 and 137 Ma, and that final emplacement of the Raohe Complex took place at 137–130 Ma. The accretion of the Yuejinshan Complex probably occurred between the 210 and 180 Ma, suggesting that paleo-Pacific plate subduction was initiated in the Late Triassic to Early Jurassic.

195 citations

Journal ArticleDOI
TL;DR: In this article, the authors present Sensitive High Resolution Ion Microprobe (SHRIMP) U and Pb isotope analyses of zircon from a charnockite and a charnsockite-hosted leucosome in order to determine the age of magmatism and anatexis related to high-grade metamorphism immediately to the north of the Palghat Cauvery Shear System (PCSS), a proposed Neoproterozoic terrane boundary within Southern India.

195 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Great Valley Group (GVG) data to define eight petrofacies (Stony Creek, Platina, Lodoga, Grabast, Boxer, Cortina, Los Gatos and Rumsey) and seven petrographic parameters (P/F, Lv/L, M, Qp/Q, Q, F, and L--listed in decreasing importance to PetroFacies discrimination).
Abstract: Data from the Great Valley Group (sequence) represent the most complete information regarding sandstone petrology of sediment derived from a magmatic arc. This information is useful in documenting tectonic and magmatic events within the arc and related terranes, and forms the basis for the establishment of petrostratigraphic units for mapping and correlation. Sandstone and conglomerate compositions are controlled by changes in provenance, many of which were basinwide and synchronous. Clay-mineral composition is controlled primarily by burial metamorphism. Careful attention to sample collection, sample preparation, and petrographic techniques is essential for uniform results. Seven petrographic parameters (P/F, Lv/L, M, Qp/Q, Q, F, and L--listed in decreasing importance to petrofacies discrimination) define eight petrofacies (Stony Creek, Platina, Lodoga, Grabast, Boxer, Cortina, Los Gatos and Rumsey--listed in approximate order of decreasing age). The Upper Jurassic-Lower Cretaceous petrofacies (Stony Creek, Platina, and Lodoga) contain higher lithic contents (supracrustal sources), whereas the Upper Cretaceous petrofacies (especially the Rumsey) contain higher proportions of plutoniclastic components (quartz, feldspar, and micas). The proportion of potassium-feldspar increases from near zero in the Upper Jurassic to nearly 50% of all feldspars in the uppermost Cretaceous. The lower part of the Great Valley Group (Upper Jurassic and Lower Cretaceous) contains significant quantities of sedimentaclastic and metamorphiclastic material eroded from accreted and deformed terranes ("tectonic highlands") formed by the arc-arc collision (Nevadan orogeny) that occurred prior to initiation of the Franciscan-Great Valley-Sierra Nevada arc-trench system. The Klamath Mountains area provided a major proportion of this detritus. Ophiolite and serpentinite detritus was deposited locally near the base of the Great Valley Group as a result of deformation along the east side of the growing Franciscan subduction complex. Volcaniclastic detritus was fed into the entire forearc basin as magmatism increased in the Sierra Nevada area during the Cretaceous. As the volcanic cover was stripped off, plutoniclastic and metamorphiclastic detritus from the underlying batholithic terranes was provided in abundance to the forearc basin. Crustal components were more "continental" in the southern Sierra Nevada and more "oceanic" in the northern Sierra Nevada, as demonstrated by the higher proportions of metamorphiclastic detritus and by the more felsic nature of volcaniclastic detritus to the south. By the middle of the Late Cretaceous, extensive batholithic terranes provided potassium-feldspar-rich arkosic detritus to the entire forearc basin. By the Paleogene, arc magmatism had migrated eastward sufficiently that deeper levels of the California part of the arc were exposed by erosion, tectonic activity decreased in the forearc basin, and the basin was filled to sea leve in most parts.

195 citations


Network Information
Related Topics (5)
Subduction
22.4K papers, 1.1M citations
93% related
Sedimentary rock
30.3K papers, 746.5K citations
93% related
Zircon
23.7K papers, 786.6K citations
92% related
Lithosphere
14.5K papers, 723.8K citations
92% related
Basalt
18.6K papers, 805.1K citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023360
2022725
2021413
2020420
2019407
2018344