scispace - formally typeset
Search or ask a question
Topic

Testbed

About: Testbed is a research topic. Over the lifetime, 10858 publications have been published within this topic receiving 147147 citations. The topic is also known as: test bed.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect is proposed and a resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture.
Abstract: Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.

43 citations

Proceedings ArticleDOI
23 Feb 2005
TL;DR: The system and node architectures, together with the management system, are described and the testing platform that is currently being used for testing ETOMIC nodes before actual deployment is presented.
Abstract: The European Traffic Observatory is a European Union VI Framework Program sponsored effort, within the Integrated Project EVERGROW, that aims at providing a paneuropean traffic measurement infrastructure with high-precision, GPS-synchronized monitoring nodes. This paper describes the system and node architectures, together with the management system. On the other hand, we also present the testing platform that is currently being used for testing ETOMIC nodes before actual deployment.

43 citations

Proceedings Article
11 Apr 2007
TL;DR: Results indicate that for evaluation of applications running over Internet paths, Flexlab with this model can yield far more realistic results than either PlanetLab without resource reservations, or Emulab without topological information.
Abstract: Networked systems are often evaluated on overlay testbeds such as PlanetLab and emulation testbeds such as Emulab. Emulation testbeds give users great control over the host and network environments and offer easy reproducibility, but only artificial network conditions. Overlay testbeds provide real network conditions, but are not repeatable environments and provide less control over the experiment. We describe the motivation, design, and implementation of Flexlab, a new testbed with the strengths of both overlay and emulation testbeds. It enhances an emulation testbed by providing the ability to integrate a wide variety of network models, including those obtained from an overlay network. We present three models that demonstrate its usefulness, including "application-centric Internet modeling" that we specifically developed for Flexlab. Its key idea is to run the application within the emulation testbed and use its offered load to measure the overlay network. These measurements are used to shape the emulated network. Results indicate that for evaluation of applications running over Internet paths, Flexlab with this model can yield far more realistic results than either PlanetLab without resource reservations, or Emulab without topological information.

43 citations

Proceedings ArticleDOI
01 Nov 2013
TL;DR: This work proposes several social-based offloadee selection algorithms that exploit contact history between devices, as well as friendship relationships or common interests between device owners or users, and provides solutions for balancing power consumption by distributing computational load across MDC members to elongate and MDC's life time.
Abstract: With the rise in mobile device adoption, and growth in mobile application market expected to reach $30 billion by the end of 2013, mobile user expectations for pervasive computation and data access are unbounded. Yet, various applications, such as face recognition, speech and object recognition, and natural language processing, exceed the limits of standalone mobile devices. Such applications resort to exploiting larger resources in the cloud, which sparked researching problems arising from data and computational offloading to the cloud. Research in this area has mainly focused on profiling and offloading tasks to remote cloud resources, automatically transforming mobile applications by provisioning and partitioning its execution into offloadable tasks, and more recently, bringing computational resources (e.g. Cloudlets) closer to task initiators in order to save mobile device energy. In this work, we argue for environments in which computational offloading is performed among mobile devices forming what we call a Mobile Device Cloud (MDC). Our contributions are: (1) Implementing an emulation testbed for quantifying the potential gain, in execution time or energy consumed, of offloading tasks to an MDC. This testbed includes a client offloading application, an offloadee server receiving tasks, and a traffic shaper situated between the client and server emulating different communication technologies (Bluetooth 3.0, Bluetooth 4.0, WiFi Direct, WiFi, and 3G). Our evaluation for offloading tasks with different data and computation characteristics to an MDC registers up to 80% and 90% savings in time or energy respectively, as opposed to offloading to the cloud. (2) Providing an MDC experimental platform to enable future evaluation and assessment of MDC-based solutions. We create a testbed, shown in Figure 1, to measure the energy consumed by a mobile device when running or offloading tasks using different communication technologies. We build an offloading Android-based mobile application and measure the time taken to offload tasks, execute them, and receive the results from other devices within an MDC. Our experimental results show gains in time and energy savings, up to 50% and 26% respectively, by offloading within MDCs, as opposed to locally executing tasks. (3) Providing solutions that address two major MDC challenges. First, due to mobility, offloadee devices leaving an MDC would seriously compromise performance. Therefore, we propose several social-based offloadee selection algorithms that exploit contact history between devices, as well as friendship relationships or common interests between device owners or users. Second, we provide solutions for balancing power consumption by distributing computational load across MDC members to elongate and MDC's life time. This need occurs when users need to maximize the lifetime of an ensemble of devices that belong to the same user or household. We evaluate the algorithms we propose for addressing these two challenges using the real datasets that contain contact mobility traces and social information for conference attendees over the span of three days. Our results show the impact of choosing the suitable offloadee subset, the gain from leveraging social information, and how MDCs can live longer by balancing power consumption across their members.

43 citations

Proceedings ArticleDOI
01 Oct 2016
TL;DR: The design, control, energy management, and implementation of the City College of New York (CCNY) direct current microgrid laboratory testbed, which was custom designed and implemented with minimal off-the-shelf components to enable significant flexibility and reconfiguration capability is presented.
Abstract: This paper presents the design, control, energy management, and implementation of the City College of New York (CCNY) direct current (DC) microgrid laboratory testbed. This facility was custom designed and implemented by researchers at CCNY with minimal off-the-shelf components to enable significant flexibility and reconfiguration capability. The microgrid consists of renewable energy resources, energy storage system and controllable loads, and can operate in either a grid-connected or an islanded mode. The design steps, requirements, and results of the developed testbed were discussed. Moreover, several operational scenarios were tested. The experimental results verify the applicability and flexibility of the developed microgrid testbed.

43 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
92% related
Wireless sensor network
142K papers, 2.4M citations
92% related
Server
79.5K papers, 1.4M citations
92% related
Wireless network
122.5K papers, 2.1M citations
92% related
Wireless
133.4K papers, 1.9M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023917
20222,046
2021499
2020590
2019693
2018639