scispace - formally typeset
Search or ask a question
Topic

Testbed

About: Testbed is a research topic. Over the lifetime, 10858 publications have been published within this topic receiving 147147 citations. The topic is also known as: test bed.


Papers
More filters
Proceedings ArticleDOI
07 Aug 2002
TL;DR: This paper presents a design methodology to build a hierarchical large-scale ad hoc network using different types of radio capabilities at different layers and proposes a new stable clustering scheme to deploy the BN.
Abstract: A mobile ad hoc network (MANET) is usually assumed to be homogeneous, where each mobile node shares the same radio capacity. However, a homogeneous ad hoc network suffers from poor scalability. Recent research has demonstrated its performance bottleneck both theoretically and through simulation experiments and testbed measurement Building a physically hierarchical ad hoc network is a very promising way to achieve good scalability. In this paper, we present a design methodology to build a hierarchical large-scale ad hoc network using different types of radio capabilities at different layers. In such a structure, nodes are first dynamically grouped into multihop clusters. Each group elects a cluster-head to be a backbone node (BN). Then higher-level links are established to connect the BN into a backbone network. Following this method recursively, a multilevel hierarchical network can be established. Three critical issues are addressed in this paper. We first analyze the optimal number of BN for a layer in theory. Then, we propose a new stable clustering scheme to deploy the BN. Finally LANMAR routing is extended to operate the physical hierarchy efficiently. Simulation results using GloMoSim show that our proposed schemes achieve good performance.

240 citations

Journal ArticleDOI
TL;DR: Classical ray-tracing techniques, which have produced the most realistic computer-generated images to date, are being enhanced in this developmental system.
Abstract: Classical ray-tracing techniques, which have produced the most realistic computer-generated images to date, are being enhanced in this developmental system.

234 citations

Book ChapterDOI
17 Apr 2011
TL;DR: Indriya as mentioned in this paper is a large-scale low-cost wireless sensor network testbed deployed at the National University of Singapore (NU) which uses TelosB devices and it is built on an active-USB infrastructure.
Abstract: This paper presents Indriya, a large-scale, low-cost wireless sensor network testbed deployed at the National University of Singapore. Indriya uses TelosB devices and it is built on an active-USB infrastructure. The infrastructure acts as a remote programming back-channel and it also supplies electric power to sensor devices. Indriya is designed to reduce the costs of both deployment and maintenance of a large-scale testbed. Indriya has been in use by over 100 users with its maintenance incurring less than US$500 for almost 2 years of its usage.

232 citations

Proceedings ArticleDOI
17 Aug 2014
TL;DR: It is shown that task-aware network scheduling, which groups flows of a task and schedules them together, can reduce both the average as well as tail completion time for typical data center applications.
Abstract: Many data center applications perform rich and complex tasks (e.g., executing a search query or generating a user's news-feed). From a network perspective, these tasks typically comprise multiple flows, which traverse different parts of the network at potentially different times. Most network resource allocation schemes, however, treat all these flows in isolation -- rather than as part of a task -- and therefore only optimize flow-level metrics. In this paper, we show that task-aware network scheduling, which groups flows of a task and schedules them together, can reduce both the average as well as tail completion time for typical data center applications. To achieve these benefits in practice, we design and implement Baraat, a decentralized task-aware scheduling system. Baraat schedules tasks in a FIFO order but avoids head-of-line blocking by dynamically changing the level of multiplexing in the network. Through experiments with Memcached on a small testbed and large-scale simulations, we show that Baraat outperforms state-of-the-art decentralized schemes (e.g., pFabric) as well as centralized schedulers (e.g., Orchestra) for a wide range of workloads (e.g., search, analytics, etc).

229 citations

Proceedings ArticleDOI
23 Apr 2006
TL;DR: This work has extended the Emulab network testbed software to provide the first remotely-accessible mobile wireless and sensor testbed, and presents the design and implementation, and evaluates key aspects of its performance.
Abstract: Simulation has been the dominant research method- ology in wireless and sensor networking. When mobility is added, real-world experimentation is especially rare. However, it is becoming clear that simulation models do not sufficiently capture radio and sensor irregularity in a complex, real-world environment, especially indoors. Unfortunately, the high labor and equipment costs of truly mobile experimental infrastructure present high barriers to such experimentation. We describe our experience in creating a testbed to lower those barriers. We have extended the Emulab network testbed software to provide the first remotely-accessible mobile wireless and sensor testbed. Robots carry motes and single board computers through a fixed indoor field of sensor-equipped motes, all running the user's selected software. In real-time, interactively or driven by a script, remote users can position the robots, control all the computers and network interfaces, run arbitrary programs, and log data. Our mobile testbed provides simple path planning, a vision-based tracking system accurate to 1 cm, live maps, and webcams. Precise positioning and automation allow quick and painless evaluation of location and mobility effects on wireless protocols, location algorithms, and sensor-driven applications. The system is robust enough that it is deployed for public use. We present the design and implementation of our mobile testbed, evaluate key aspects of its performance, and describe a few experiments demonstrating its generality and power.

229 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
92% related
Wireless sensor network
142K papers, 2.4M citations
92% related
Server
79.5K papers, 1.4M citations
92% related
Wireless network
122.5K papers, 2.1M citations
92% related
Wireless
133.4K papers, 1.9M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023917
20222,046
2021499
2020590
2019693
2018639