scispace - formally typeset
Search or ask a question
Topic

Testosterone

About: Testosterone is a research topic. Over the lifetime, 23258 publications have been published within this topic receiving 808079 citations. The topic is also known as: 4-androsten-17beta-ol-3-one & 4-Androsten-3-one-17b-ol.


Papers
More filters
Journal ArticleDOI
TL;DR: Optimal clinical efficacy will require testing of novel approaches targeting complete suppression of systemic and intracrine contributions to the prostatic androgen microenvironment.
Abstract: Androgen deprivation therapy (ADT) remains the primary treatment for advanced prostate cancer. The efficacy of ADT has not been rigorously evaluated by demonstrating suppression of prostatic androgen activity at the target tissue and molecular level. We determined the efficacy and consistency of medical castration in suppressing prostatic androgen levels and androgen-regulated gene expression. Androgen levels and androgen-regulated gene expression (by microarray profiling, quantitative reverse transcription-PCR, and immunohistochemistry) were measured in prostate samples from a clinical trial of short-term castration (1 month) using the gonadotropin-releasing hormone antagonist, Acyline, versus placebo in healthy men. To assess the effects of long-term ADT, gene expression measurements were evaluated at baseline and after 3, 6, and 9 months of neoadjuvant ADT in prostatectomy samples from men with localized prostate cancer. Medical castration reduced tissue androgens by 75% and reduced the expression of several androgen-regulated genes (NDRG1, FKBP5, and TMPRSS2). However, many androgen-responsive genes, including the androgen receptor (AR) and prostate-specific antigen (PSA), were not suppressed after short-term castration or after 9 months of neoadjuvant ADT. Significant heterogeneity in PSA and AR protein expression was observed in prostate cancer samples at each time point of ADT. Medical castration based on serum testosterone levels cannot be equated with androgen ablation in the prostate microenvironment. Standard androgen deprivation does not consistently suppress androgen-dependent gene expression. Suboptimal suppression of tumoral androgen activity may lead to adaptive cellular changes allowing prostate cancer cell survival in a low androgen environment. Optimal clinical efficacy will require testing of novel approaches targeting complete suppression of systemic and intracrine contributions to the prostatic androgen microenvironment.

516 citations

Journal ArticleDOI
TL;DR: The functional information that has been obtained from the knock out of the androgen receptor from specific cell types in the testis and the genes found to be regulated after altering testosterone levels or androgens receptor expression are reviewed.

511 citations

Journal ArticleDOI
TL;DR: Abnormal development of Sertoli cells, leading to abnormalities in other cell types, is the hypothesized explanation for the abnormal changes in DBP-exposed animals.
Abstract: Background The disorders comprising human 'testicular dysgenesis syndrome' (TDS) may be increasing in incidence. TDS originates in fetal life but the mechanisms are not known, and discerning them requires an animal model. Methods and results The study investigated whether male rats exposed in utero to dibutyl phthalate [DBP; 500 mg/kg on gestational days (GD) 13-21] would provide a suitable model for human TDS. DBP induced a high rate (>60%) of cryptorchidism (mainly unilateral), hypospadias, infertility and testis abnormalities, similar to those in human TDS. Cell-specific immunohistochemistry and confocal microscopy were used to track development of Sertoli [anti-Mullerian hormone (AMH), Wilm's tumour (WT-1) protein, p27(kip)], Leydig [3beta-hydroxysteroid dehydrogenase (3beta-HSD)], germ (DAZL protein) and peritubular myoid (smooth muscle actin) cells from fetal life to adulthood. In scrotal and cryptorchid testes of DBP-exposed males, areas of focal dysgenesis were found that contained Sertoli and Leydig cells, and gonocytes and partially formed testicular cords; these dysgenetic areas were associated with Leydig cell hyperplasia at all ages. Suppression ( approximately 90%) of testicular testosterone levels on GD 19 in DBP-exposed males, coincident with delayed peritubular myoid cell differentiation, may have contributed to the dysgenesis. Double immunohistochemistry using WT-1 (expressed in all Sertoli cells) and p27(kip) (expressed only in mature Sertoli cells) revealed immature Sertoli cells in dysgenetic areas. DBP-exposed animals also exhibited Sertoli cell-only (SCO) tubules, sporadically in scrotal and predominantly in cryptorchid, testes, or foci of SCO within normal tubules in scrotal testes. In all SCO areas the Sertoli cells were immature. Intratubular Leydig cells were evident in DBP-exposed animals and, where these occurred, Sertoli cells were immature and spermatogenesis was absent. Abnormal Sertoli cell-gonocyte interaction was evident at GD 19 in DBP-exposed rats coincident with appearance of multinucleated gonocytes, although these disappeared by postnatal day 10 during widespread loss of germ cells. Conclusions Abnormal development of Sertoli cells, leading to abnormalities in other cell types, is our hypothesized explanation for the abnormal changes in DBP-exposed animals. As the testicular and other changes in DBP-exposed rats have all been reported in human TDS, DBP exposure in utero may provide a useful model for defining the cellular pathways in TDS.

508 citations

Journal ArticleDOI
TL;DR: Excess of circulating leptin may be an important contributor to the development of reduced androgen levels in male obesity, according to previous in vitro findings.
Abstract: Leptin circulates in plasma at concentrations that parallel the amount of fat reserves. In obese males, androgen levels decline in proportion to the degree of obesity. Recently, we have shown that in rodent Leydig cells leptin inhibits hCG-stimulated testosterone (T) production via a functional leptin receptor isoform; others have found that leptin inhibits basal and hCG-induced T secretion by testis from adult rats. In this study, we further investigated the relationship linking leptin and androgens in men. Basal and hCG-stimulated leptin and sex hormone levels were studied in a large group of men ranging from normal weight to very obese (body mass index, 21.8-55.7). Initial cross-sectional studies showed that circulating leptin and fat mass (FM) were inversely related with total and free T (r = -0.51 and r = -0.38, P < 0.01 and P < 0.05, respectively). Multiple regression analysis indicated that the correlation between leptin or FM and T was not lost after controlling for SHBG and/or LH and/or estradiol (E2) levels and that leptin was the best hormonal predictor of the lower androgen levels in obesity. Dynamic studies showed that in obese men the area under the curve of T and free T to LH/hCG stimulation (5000 IU i.m.) was 30-40% lower than in controls and inversely correlated with leptin levels (r = -0.45 and r = -0.40, P < 0.01 and P < 0.05, respectively). Also, LH/hCG-stimulation caused higher increases in 17-OH-progesterone to T ratio in obese men than in controls, whereas no differences were observed between groups either in stimulated E2 levels or in the E2/T ratio. In all subjects, the percentage increases from baseline in the 17-OH-progesterone to T ratio were directly correlated with leptin levels or FM (r = 0.40 and r = 0.45, P < 0.01), but not with E2 or other hormonal variables. In conclusion, our studies, together with previous in vitro findings, indicate that excess of circulating leptin may be an important contributor to the development of reduced androgens in male obesity.

504 citations

Journal ArticleDOI
01 Aug 2000-Shock
TL;DR: The immunomodulatory properties of sex hormones after trauma‐hemorrhage might represent novel therapeutic strategies for the treatment of immunodepression in trauma patients.
Abstract: Several clinical and experimental studies show a gender dimorphism of the immune and organ responsiveness in the susceptibility to and morbidity from shock, trauma, and sepsis. In this respect, cell-mediated immune responses are depressed in males after trauma-hemorrhage, whereas they are unchanged or enhanced in females. Sex hormones contribute to this gender-specific immune response after adverse circulatory conditions. Specifically, studies indicate that androgens are responsible for the immunodepression after trauma-hemorrhage in males. In contrast, female sex steroids seem to exhibit immunoprotective properties after trauma and severe blood loss, because administration of estrogen prevents the androgen-induced immunodepression in castrated male mice. Nonetheless, the precise underlying mechanisms for these immunomodulatory effects of sex steroids after shock remain unknown. Although testosterone depletion, testosterone receptor antagonism, or estrogen treatment has been shown to prevent the depression of immune functions after trauma-hemorrhage, it remains to be established whether differences in the testosterone-estradiol ratio are responsible for the immune dysfunction. Furthermore, sex hormone receptors have been identified on various immune cells, suggesting direct effects. Thus, the immunomodulatory properties of sex hormones after trauma-hemorrhage might represent novel therapeutic strategies for the treatment of immunodepression in trauma patients.

504 citations


Network Information
Related Topics (5)
Estrogen
40.7K papers, 1.7M citations
92% related
Adipose tissue
54.6K papers, 2.5M citations
83% related
Estrogen receptor
34.2K papers, 1.4M citations
82% related
Insulin
124.2K papers, 5.1M citations
82% related
Thyroid
68.8K papers, 1.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021509
2020435
2019438
2018456
2017505