scispace - formally typeset
Search or ask a question
Topic

Tetrahedral molecular geometry

About: Tetrahedral molecular geometry is a research topic. Over the lifetime, 1795 publications have been published within this topic receiving 30706 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The structure of [ZnCl2(bdmpame)]·CH2Cl2 has been resolved by X-ray crystallographic analysis as discussed by the authors, showing that the Zn atom has a distorted tetrahedral geometry involving a nitrogen atom from each pyrazole in bdmpame and two chloro ligands with bond lengths in the range 2.037(4)−2.237(2) A.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the crystal and molecular structures of 1a·DMF and 2a-DMF were determined from X-ray diffraction data and the compounds are isomorphous and crystallize in the triclinic space group P 1 with unit cell parameters for 1a(2a)-DMF: a=12.047(0) (12.053(2)), b= 17.620(3) (17.650(5)), c=14.514(1) (14.3)

40 citations

Journal ArticleDOI
TL;DR: In this article, the reaction of ZnCl2 with R,R-bmbcd in ethanol yields the chiral [ZnCl 2(R,Rmbcd)] 2, which crystallizes in the monoclinic space group P21.

40 citations

Journal ArticleDOI
TL;DR: A family of rigid tetrahedral molecules based on tetraphenylmethane has been synthesized as discussed by the authors, which are used for molecular engineering of architecturally regular macromolecular systems.
Abstract: A family of rigid tetrahedral molecules based on tetraphenylmethane has been synthesized. The primary preparative chemistry involved Suzuki coupling. Reactions typically proceeded in good yields providing synthetic entry to tetrahedral building blocks for molecular engineering of architecturally regular macromolecular systems.

40 citations

Journal ArticleDOI
TL;DR: The selection of 2,2-diphenyl-2-mercaptoacetic acid as ligand with reductive properties has afforded the first mononuclear complex containing a CoIIS2O2 core and thus an unprecedented model for Co(II)-substituted metalloproteins containing tetrahedral MS2O 2 active sites.
Abstract: The reaction of Zn(II) and Co(II) with thiosalicylic acid, o-HSC6H4COOH, and its methyl ester has led to the following complexes: [Zn(SC6H4COO)] (1), (NEt4)Na[Zn(SC6H4COO)2].H2O (2), (NEt4)2Na[Co(SC6H4COO)3].2H2O (3), (NEt4)3Na3[(Co(SC6H4COO)3)2].6MeOH (4), [Zn(SC6H4COOMe)2] (5), and [Co(SC6H4COOMe)n], n = 2 (6), 3 (7). These ligands have not allowed stabilization of Co(II) in a sulfur-oxygen coordination environment. The structures of complexes 2-4 and 7 have been determined crystallographically. Those of 2-4 show significant similarities such as the behavior of the -SC6H4COO- anion as chelating ligand and the involvement of sodium ions as a structural element. Thus, the structure of the [Na(Zn(SC6H4COO)2)(H2O)]- anion in complex 2 can be described as infinite chains of consecutive [Zn(SC6H4COO)2]2- metalloligands linked by [Na(H2O)]+ centers, that of the [Na(Co(SC6H4COO)3(H2O)2)]2(4-) anion in 3 as a centrosymmetric tetranuclear Co2Na2 dimer with a (CoIII(S[symbol: see text]O)3)Na(mu-H2O)2Na(CoIII(S[symbol: see text]O)3) core, and that of the pentanuclear [Na3(Co(SC6H4COO)3)2(MeOH)6]3- anion in 4 as two dinuclear [(CoIII(S[symbol: see text]O)3)Na(MeOH)3] fragments linked to a central sodium ion, which appears to be the first structurally characterized example of a NaS6 site. The use of the o-HSC6H4COOMe ligand allowed the synthesis of [Co(SC6H4COOMe)2] (6) but not its full structural characterization. Instead, [Co(SC6H4COOMe)3] (7) was obtained and structurally characterized. It consists of mononuclear molecules containing an octahedral CoIIIS3O3 core. The selection of 2,2-diphenyl-2-mercaptoacetic acid as ligand with reductive properties has afforded the first mononuclear complex containing a CoIIS2O2 core and thus an unprecedented model for Co(II)-substituted metalloproteins containing tetrahedral MS2O2 active sites. The synthesis and full structural characterization of the isostructural complexes (NEt4)2[Zn(Ph2C(S)COO)2] (8) and (NEt4)2[Co(Ph2C(S)COO)2] (9) show that they consist of discrete [M(Ph2C(S)COO)2]2- anions, with a distorted tetrahedral coordination about the metal. In addition, the stability conferred by the ligand on the CoIIS2O2 core has allowed its characterization in solution by paramagnetic 1D and 2D 1H NMR studies. The longitudinal relaxation times of the hyperfine-shifted resonances and NOESY spectra have led to the assignment of all resonances of the cobalt complex and confirmed that it maintains its tetrahedral geometry in solution. Magnetic measurements (2-300 K) for complex 9 and 9.2H2O are in good agreement with distorted tetrahedral and octahedral environments, respectively.

40 citations


Network Information
Related Topics (5)
Hydrogen bond
57.7K papers, 1.3M citations
82% related
Molecule
52.4K papers, 1.2M citations
81% related
Crystal structure
100.9K papers, 1.5M citations
80% related
Ligand
67.7K papers, 1.3M citations
80% related
Aryl
95.6K papers, 1.3M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202240
202143
202039
201939
201847