scispace - formally typeset
Search or ask a question
Topic

Tetraplegia

About: Tetraplegia is a research topic. Over the lifetime, 1920 publications have been published within this topic receiving 51950 citations. The topic is also known as: quadriplegia.


Papers
More filters
Journal ArticleDOI
TL;DR: The incidence of various types of fracture and fracture-dislocation and the degree of reduction achieved by postural reduction is analysed in relation to the initial and late neurological lesions.
Abstract: Six hundred and twelve patients with closed spinal injuries are described The incidence of various types of fracture and fracture-dislocation and the degree of reduction achieved by postural reduction is analysed in relation to the initial and late neurological lesions The average time that the patients were kept in bed is given for the various types of skeletal injury Only 4 patients developed late instability of the spine

2,225 citations

Journal ArticleDOI
17 May 2012-Nature
TL;DR: The results demonstrate the feasibility for people with tetraplegia, years after injury to the central nervous system, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.
Abstract: Two people with long-standing tetraplegia use neural interface system-based control of a robotic arm to perform three-dimensional reach and grasp movements. John Donoghue and colleagues have previously demonstrated that people with tetraplegia can learn to use neural signals from the motor cortex to control a computer cursor. Work from another lab has also shown that monkeys can learn to use such signals to feed themselves with a robotic arm. Now, Donoghue and colleagues have advanced the technology to a level at which two people with long-standing paralysis — a 58-year-old woman and a 66-year-old man — are able to use a neural interface to direct a robotic arm to reach for and grasp objects. One subject was able to learn to pick up and drink from a bottle using a device implanted 5 years earlier, demonstrating not only that subjects can use the brain–machine interface, but also that it has potential longevity. Paralysis following spinal cord injury, brainstem stroke, amyotrophic lateral sclerosis and other disorders can disconnect the brain from the body, eliminating the ability to perform volitional movements. A neural interface system1,2,3,4,5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with long-standing tetraplegia can use a neural interface system to move and click a computer cursor and to control physical devices6,7,8. Able-bodied monkeys have used a neural interface system to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here we demonstrate the ability of two people with long-standing tetraplegia to use neural interface system-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm and hand over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor 5 years earlier, also used a robotic arm to drink coffee from a bottle. Although robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after injury to the central nervous system, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.

2,181 citations

Journal ArticleDOI
TL;DR: With continued development of neuroprosthetic limbs, individuals with long-term paralysis could recover the natural and intuitive command signals for hand placement, orientation, and reaching, allowing them to perform activities of daily living.

1,510 citations

Journal ArticleDOI
TL;DR: Over 1000 patients with traumatic paraplegia or tetraplegia and many more with fractures and dislocations of the spine without damage to the central nervous system have been observed and treated at the Sheffield Spinal Injuries Centre.
Abstract: Over 1000 patients with traumatic paraplegia or tetraplegia and many more with fractures and dislocations of the spine without damage to the central nervous system have been observed and treated at the Sheffield Spinal Injuries Centre. The vertebral lesions with or without injury to the spinal cord or nerve roots have been classified on the basis of the clinical and roentgenographic findings into five groups: 1. Pure flexion which causes a wedge fracture which is stable. 2. Flexion-rotation which produces an unstable fracture-dislocation with rupture of tue posterior ligament complex, separation of the spinous processes, a slice fracture near the upper border of the lower vertebra, and dislocation of the lower articular processes of the upper vertebra. 3. Extension which causes rupture of the intervertebral disc and the anterior common ligament along with avulsion of a small bone fragment from the anterior border of the dislocated vertebra. The dislocation almost always reduces spontaneously and is stable in flexion. 4. Vertebral compression which results in a fracture of the end plate as the nucleus of the intervertebral disc is forced into the vertebral body and causes it to burst with outward displacement of fragments of the body. Since the ligaments remain intact this comminuted fracture is stable. 5. Shearing which results in forward displacement of the whole vertebra and an unstable fracture of the articular processes or pedicles. Accurate diagnosis and prognosis of the neurological lesion depend on knowledge of the anatomy of the spinal cord and nerve roots, a careful neurological examination shortly after the original injury and repeated examinations thereafter, comparison of the level of spinal injury with the level of paraplegia or tetraplegia, differentiation between paraplegia and tetraplegia of immediate and delayed onset, and the appropriate therapy of the various types and levels of lesion. Simple wedge fractures were treated by bed rest for two to three weeks, mobilization of the back, and ambulation with a back support. Rotational fracture-dislocations in the cervical, thoracolumbar, or lumbar spine were almost invariably associated with tetraplegia or paraplegia. Cervical fracture-dislocations with or without tetraplegia were treated by skull-caliper traction. Thoracolumbar or lumbar fracture-dislocations without paraplegia were treated on a plaster bed for twelve weeks followed by a back support for a few weeks. The thoracolumbar fracture-dislocations with paraplegia were never treated by the plaster bed method but rather by open reduction of the dislocation, and maintenance of the reduction by internal fixation with double plating of the spinous processes. Spontaneous fusion was sufficiently advanced after eight to twelve weeks to get the patient out of bed. If the plates cut out of the bone after twelve weeks, they were removed. Patients with loss of sensation resulting from paraplegia or tetraplegia were turned every two hours to avoid pressure sores. Extension dislocations in the cervical spine, if they had reduced spontaneously, were fitted with a collar to hold the head and neck in sligh flexion for a period of eight to twelve weeks. For dislocations in this region which had not reduced spontaneously, manual manipulation under endotracheal anesthesia was employed. Reduction was maintained by skull tongs applied prior to manipulation. If after four weeks there was roentgenographic evidence of new bone indicating Spontaneous fusion, traction was continued for four to six weeks more followed by a neck collar for an additional six weeks. If new bone did not appear on the roentgenograms after four weeks, anterior fusion was performed followed by skull traction for an additional eight weeks. Vertical compression burst fractures in the cervical spine were treated by skull traction for six weeks followed by a neck collar. In the lumbar spine, burst fractures without paraplegia were treated by immobilization in a plaster bed for eight to twelve weeks followed by back support. The plaster bed was never used in burst fractures with paraplegia. Shear fractures were always associated with complete paraplegia. These fractures were usually stable and did not require operative reduction except when the displacement was great.

901 citations

Journal ArticleDOI
TL;DR: The spontaneous rate of recovery after SCI and resulting consequences for achieving statistically significant results in clinical trials are examined, based on previous data of the magnitude of spontaneous recovery afterSCI, as measured by changes in ASIA motor scores.
Abstract: The International Campaign for Cures of Spinal Cord Injury Paralysis (ICCP) supported an international panel tasked with reviewing the methodology for clinical trials in spinal cord injury (SCI), and making recommendations on the conduct of future trials. This is the first of four papers. Here, we examine the spontaneous rate of recovery after SCI and resulting consequences for achieving statistically significant results in clinical trials. We have reanalysed data from the Sygen trial to provide some of this information. Almost all people living with SCI show some recovery of motor function below the initial spinal injury level. While the spontaneous recovery of motor function in patients with motor-complete SCI is fairly limited and predictable, recovery in incomplete SCI patients (American spinal injury Association impairment scale (AIS) C and AIS D) is both more substantial and highly variable. With motor complete lesions (AIS A/AIS B) the majority of functional return is within the zone of partial preservation, and may be sufficient to reclassify the injury level to a lower spinal level. The vast majority of recovery occurs in the first 3 months, but a small amount can persist for up to 18 months or longer. Some sensory recovery occurs after SCI, on roughly the same time course as motor recovery. Based on previous data of the magnitude of spontaneous recovery after SCI, as measured by changes in ASIA motor scores, power calculations suggest that the number of subjects required to achieve a significant result from a trial declines considerably as the start of the study is delayed after SCI. Trials of treatments that are most efficacious when given soon after injury will therefore, require larger patient numbers than trials of treatments that are effective at later time points. As AIS B patients show greater spontaneous recovery than AIS A patients, the number of AIS A patients requiring to be enrolled into a trial is lower. This factor will have to be balanced against the possibility that some treatments will be more effective in incomplete patients. Trials involving motor incomplete SCI patients, or trials where an accurate assessment of AIS grade cannot be made before the start of the trial, will require large subject numbers and/or better objective assessment methods.

773 citations


Network Information
Related Topics (5)
Spinal cord injury
27.9K papers, 794.9K citations
86% related
Low back pain
23.8K papers, 825.6K citations
81% related
Rehabilitation
46.2K papers, 776.3K citations
81% related
Ankle
30.4K papers, 687.4K citations
79% related
Spinal cord
44.6K papers, 1.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202373
2022162
202180
202086
201974
201875