scispace - formally typeset
Search or ask a question
Topic

Theobromine

About: Theobromine is a research topic. Over the lifetime, 1137 publications have been published within this topic receiving 29723 citations. The topic is also known as: 3,7-Dimethylxanthine & Theobromin.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of N-(arylpiperazinyl)acetamide derivatives of 1,3- and 3,7-dimethyl-1H-purine-2,6(3H,7H)-dione was synthesized and biologically evaluated in in vitro competition binding experiments for serotonin 5-HT6,5-HT7, and dopamine D2 receptors.
Abstract: Abstract A series of N-(arylpiperazinyl)acetamide derivatives of 1,3- and 3,7-dimethyl-1H-purine-2,6(3H,7H)-dione was synthesized and biologically evaluated in in vitro competition binding experiments for serotonin 5-HT6, 5-HT7, and dopamine D2 receptors. The structure-affinity relationships for this group of compounds allowed for determination of structural features responsible for receptor affinity. Among the investigated derivatives, compounds 5 and 12 with (2,3-dichlorophenyl)piperazine moiety were classified as potent dual 5-HT6/D2 receptors ligands, whereas compound 4, with 4-(benzo[d]isothiazol-3-yl)piperazine moiety, and compounds 8 and 15, with (2,3-dichlorophenyl)piperazine moiety, were classified as potent D2 receptor ligands.

5 citations

Journal ArticleDOI
09 Dec 2022-Medicine
TL;DR: In this article , a multivariate logistic regression model was used to investigate the relationship between urinary paraxanthine, theobromine and caffeine metabolites and total bone mineral density (BMD).

5 citations

Book ChapterDOI
01 Jan 2013
TL;DR: Wang et al. as mentioned in this paper found that green tea is the source of simple flavonoids whereas black tea is rich in theaflavins and thearubigins, which are generated during the process of oxidation.
Abstract: Green tea is natural dried leaves of the tea plant, Camellia sinensis. This “nonfermented” tea contains more catechins than black tea (oxidized green tea) or oolong tea (partially oxidized tea). The composition of tea leaves depends on a variety of factors, including climate, season, horticultural practices, and the type and age of the plant. Green and black teas contain polyphenols, alkaloids (caffeine, theophylline, and theobromine), flavonols (quercetin, kaempferol, and rutin), amino acids, carbohydrates, proteins, chlorophyll, volatile organic compounds that contribute to tea flavonoid, fluoride, aluminum, minerals, and trace elements (Fig. 5.1). Green tea contains gallic acid (GA), chlorogenic acid, and caffeic acid, and flavonols such as kaempferol, myricetin, and quercetin (USDA data base 2003; Wang and Ho 2009). In contrast, black tea mostly has the polymerized catechins such as theaflavins and thearubigins. Collectively, these studies indicate that green tea is the source of catechins—simple flavonoids whereas black tea is rich in theaflavins and thearubigins, which are generated during the process of oxidation (USDA data base 2003; Wang and Ho 2009). Four major theaflavins have been identified from black tea, including theaflavin, theaflavin-3-gallate, theaflavin-3′-gallate, and theaflavin-3,3′-digallate. Catechins are strong antioxidants that can quench reactive oxygen species (ROS) such as super oxide radical, singlet oxygen, hydroxyl radical, peroxyl radical, nitric oxide, nitrogen dioxide, and peroxynitrite (Feng 2006). Since ancient times, green tea has been considered by the traditional Chinese and Japanese medicine as a healthful beverage. Human studies indicate that green tea not only contributes to a reduction in the risk of cardiovascular disease and some forms of cancer, but also induces antihypertensive effects by suppressing angiotensin I-converting enzyme, body weight control by suppressing the appetite, antibacterial, and antivirasic effects, solar ultraviolet protection, bone mineral density increase, antifibrotic effects, and neuroprotective effects. Green tea also decreases blood pressure (Henry and Stephens-Larson 1984) and blood sugar (Matsumoto et al. 1993). Lipid metabolism studies in animals, tissues, and cells have found that tea extract and catechins reduce triacylglycerol and total cholesterol concentrations (Nanjo et al. 1994; Chan et al. 1999), inhibit hepatic and body fat accumulation (Ishigaki et al. 1991), and stimulate thermogenesis (Dulloo et al. 2000). In addition, green tea boosts metabolism and improves immune function.

5 citations

Journal ArticleDOI
TL;DR: In this paper, the zinc(II) complexes of general formula Zn(CH3CH2CH2COO)2· nL (whereL = caffeine, nicotinamide, theobromine;n=1 or 2) were identified.
Abstract: The new zinc(II) complexes of general formula Zn(CH3CH2CH2COO)2· nL (whereL = caffeine, nicotinamide, theobromine;n=1 or 2) were prepared and identified.

5 citations

Journal ArticleDOI
TL;DR: A synthetic caffeine homolog, 1-ethyltheo-bromine, has been shown to complex with benzocaine, and results indicate that this interaction is also effective in decreasing the rate of hydrolytic breakdown of the drug through complex formation.
Abstract: A synthetic caffeine homolog, 1-ethyltheo-bromine, has been shown to complex with benzocaine. Although this interaction differs from that of caffeine in a number of respects, the results indicate that 1-ethyltheo-bromine is also effective in decreasing the rate of hydrolytic breakdown of the drug through complex formation.

5 citations


Network Information
Related Topics (5)
Ascorbic acid
93.5K papers, 2.5M citations
80% related
Calcium
78.5K papers, 2.2M citations
79% related
Glutathione
42.5K papers, 1.8M citations
77% related
Fatty acid
74.5K papers, 2.2M citations
76% related
Nitric oxide
48.1K papers, 2.3M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202122
202036
201937
201840