scispace - formally typeset
Search or ask a question
Topic

Theobromine

About: Theobromine is a research topic. Over the lifetime, 1137 publications have been published within this topic receiving 29723 citations. The topic is also known as: 3,7-Dimethylxanthine & Theobromin.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence for the first time is provided indicating that theobromine has a potential beneficial effect on browning of white adipocytes and improves lipid catabolic metabolism in both cultured white and brown adipocytes via β-adrenergic signaling and AMPK activation.
Abstract: Natural medicinal compounds to treat obesity have recently attracted a great deal of attention because of the serious side effects of synthetic anti-obesity drugs. Recent advances have been made to identify natural products showing thermogenic activity, which is responsible for energy expenditure in brown or brown-like (beige) adipocytes. Here, we explored the thermogenic effects of theobromine, one of the most abundant methylxanthines in cocoa, on 3T3-L1 white adipocytes and HIB1B brown adipocytes. Theobromine markedly increased the expression levels of brown-fat signature proteins (PGC-1α, PRDM16, and UCP1) and beige-specific genes (Cd137, Cidea, Cited1, Tbx1, and Tmen26) in 3T3-L1 white adipocytes and remarkably elevated the expression levels of brown fatspecific genes (Cidea, Lhx8, Ppargc1, Prdm16, Ucp1, and Zic1) in HIB1B brown adipocytes. Theobromine also reduced the expression of the key adipogenic transcription factors, C/EBPα and PPARγ, in white adipocytes, while enhancing their expression in HIB1B cells. In addition, theobromine regulated lipolytic events and fat oxidation by upregulating the expression of pACC, ATGL, pHSL, ACOX, and CPT1. Additional mechanistic study revealed that theobromine activates β3-AR and AMPK. In summary, our results provide evidence for the first time indicating that theobromine has a potential beneficial effect on browning of white adipocytes and improves lipid catabolic metabolism in both cultured white and brown adipocytes via β-adrenergic signaling and AMPK activation. Consumption of theobromine may be a feasible way to activate thermogenesis and improve systematic lipid metabolism to protect against obesity and other metabolic disorders.

36 citations

Journal ArticleDOI
TL;DR: The present data indicate that full assessment of intervention treatments is vital in future intervention trials with flavanols and that carbohydrate content is an important determinant for the optimal delivery of flavanol to the circulation.
Abstract: The beneficial effects of cocoa on vascular function are mediated by the absorption of monomeric flavanols into the circulation from the small intestine. As such, an understanding of the impact of the food matrix on the delivery of flavanols to the circulation is critical in assessing the potential vascular impact of a food. In the present study, we investigated the impact of carbohydrate type on flavanol absorption and metabolism from chocolate. A randomised, double-blind, three-arm cross-over study was conducted, where fifteen volunteers were randomly assigned to either a high-flavanol (266 mg) chocolate containing maltitol, a high-flavanol (251 mg) chocolate with sucrose or a low-flavanol (48 mg) chocolate with sucrose. Test chocolates were matched for micro- and macronutrients, including the alkaloids theobromine and caffeine, and were similar in taste and appearance. Total flavanol absorption was lower after consumption of the maltitolcontaining test chocolate compared with following consumption of its sucrose-containing equivalent (P¼0·002). Although the O-methylation pattern observed for absorbed flavanols was unaffected by sugar type, individual levels of unmethylated (2)-epicatechin metabolites, 3 0 -O-methyl-epicatechin and 4 0 -O-methyl-epicatechin metabolites were lower for the maltitol-containing test chocolate compared with the sucrose-containing equivalent. Despite a reduction in the total plasma pool of flavanols, the maximum time (Tmax) was unaffected. The present data indicate that full assessment of intervention treatments is vital in future intervention trials with flavanols and that carbohydrate content is an important determinant for the optimal delivery of flavanols to the circulation.

36 citations

Journal ArticleDOI
TL;DR: Hypoxanthine or its intestinal metabolites, or both, are readily absorbed from the small intestine of the rat in vitro by a saturable transport process, suggesting that the purines and pyrimidines compete for a common transport process.

36 citations

Journal ArticleDOI
TL;DR: Different expression and inducibility of CYP1A1/1A2 by 3-methylcholanthrene in rat liver and small intestine shows different changes in the contribution of the various isoenzymes involved in the biotransformation of caffeine.
Abstract: Differences in expression of CYP1A isoforms (CYP1A1 and CYP1A2) in liver and small intestine of male Wistar rats and their inducibility by 3-methylcholanthrene as well as the effect of different CYP1A1/1A2 expression on caffeine metabolism were investigated. In rat liver, CYP1A2 is the predominant isoform and CYP1A1 protein expression in liver is significantly increased after treatment by 3-methylcholanthrene. In contrast, only CYP1A1 was detected in control and 3-methylcholanthrene induced small intestine microsomes. Treatment with 3-methylcholanthrene (40 mg/kg intraperitoneally daily during 1, 2, 3 or 4 days) demonstrated that liver CYP1A1 is more sensitive for the induction effects than CYP1A2 and also that significant induction of CYP1A1 in rat small intestine only occurred after 3 to 4 days pretreatment. Caffeine metabolism and inhibition studies by furafylline, CYP1A1 antiserum and ketoconazole revealed that the differences in the expression of CYP1A1 and CYP1A2 in the two tissues led to significant changes in the contribution of the various isoenzymes involved in the biotransformation of caffeine. Whereas in liver paraxanthine formation was almost exclusively catalyzed by CYP1A2, in rat proximal intestine it was formed by CYP1A1. In addition, other CYP enzymes (most probably CYP3A) play a significant role in theobromine and theophylline formation from caffeine in rat intestine. Overall, this study shows different expression and inducibility of CYP1A1/1A2 by 3-methylcholanthrene in rat liver and small intestine. Furthermore in rat intestine cytochrome P450 isozymes such as CYP1A1 and CYP3A replace CYP1A2 in the caffeine metabolism.

36 citations

Journal ArticleDOI
TL;DR: Evaluated phenolic, methylxanthinic, and tannin composition of a mate residue (mate powder), to compare the quali-quantitative phenolic composition and the antioxidant potential of extracts obtained from distinct solvent systems found the 80% methanol extract showed the highest total polyphenol content and antioxidant activity.
Abstract: UNLABELLED Ilex paraguariensis is known to contain compounds with antioxidant properties, such as phenolic acids, and its stimulant properties are attributed to methylxanthines, such as caffeine. The aims of this study were to evaluate the phenolic, methylxanthinic, and tannin composition of a mate residue (mate powder), to compare the quali-quantitative phenolic composition and the antioxidant potential of extracts obtained from distinct solvent systems. Among the extracts prepared with different solvents, the 80% methanol extract showed the highest total polyphenol content (11.51 g/100 g) and antioxidant activity. HPLC analysis showed that 4,5 dicaffeoylquinic acid is the major component of the phenolic fraction of mate powder. The caffeine, theobromine, and tannin contents in mate powder were 1.01, 0.10, and 0.29 g/100 g, respectively. Consumption of mate powder would significantly contribute to antioxidant and stimulant intake, providing high amounts of phenolic acids, tannins, and methylxanthines with biological effects potentially beneficial for human health. PRACTICAL APPLICATION This article contributes to the minimization of residues in yerba-mate processing.

36 citations


Network Information
Related Topics (5)
Ascorbic acid
93.5K papers, 2.5M citations
80% related
Calcium
78.5K papers, 2.2M citations
79% related
Glutathione
42.5K papers, 1.8M citations
77% related
Fatty acid
74.5K papers, 2.2M citations
76% related
Nitric oxide
48.1K papers, 2.3M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202339
202288
202122
202036
201937
201840