scispace - formally typeset
Search or ask a question
Topic

Thermal diffusivity

About: Thermal diffusivity is a research topic. Over the lifetime, 26992 publications have been published within this topic receiving 528625 citations.


Papers
More filters
Book
14 Feb 1995
TL;DR: In this article, the authors present a detailed overview of the main steps in the process of spraying particles and their properties, including properties such as temperature, surface properties, and surface properties.
Abstract: Preface to the Second Edition. Preface to the First Edition. Acronyms, Abbreviations and Symbols. 1 Materials Used for Spraying. 1.1 Methods of Powders Production. 1.1.1 Atomization. 1.1.2 Sintering or Fusion. 1.1.3 Spray Drying (Agglomeration). 1.1.4 Cladding. 1.1.5 Mechanical Alloying (Mechanofusion). 1.1.6 Self-propagating High-temperature Synthesis (SHS). 1.1.7 Other Methods. 1.2 Methods of Powders Characterization. 1.2.1 Grain Size. 1.2.2 Chemical and Phase Composition. 1.2.3 Internal and External Morphology. 1.2.4 High-temperature Behaviour. 1.2.5 Apparent Density and Flowability. 1.3 Feeding, Transport and Injection of Powders. 1.3.1 Powder Feeders. 1.3.2 Transport of Powders. 1.3.3 Injection of Powders. References. 2 Pre-Spray Treatment. 2.1 Introduction. 2.2 Surface Cleaning. 2.3 Substrate Shaping. 2.4 Surface Activation. 2.5 Masking. References. 3 Thermal Spraying Techniques. 3.1 Introduction. 3.2 Flame Spraying (FS). 3.2.1 History. 3.2.2 Principles. 3.2.3 Process Parameters. 3.2.4 Coating Properties. 3.3 Atmospheric Plasma Spraying (APS). 3.3.1 History. 3.3.2 Principles. 3.3.3 Process Parameters. 3.3.4 Coating Properties. 3.4 Arc Spraying (AS). 3.4.1 Principles. 3.4.2 Process Parameters. 3.4.3 Coating Properties. 3.5 Detonation-Gun Spraying (D-GUN). 3.5.1 History. 3.5.2 Principles. 3.5.3 Process Parameters. 3.5.4 Coating Properties. 3.6 High-Velocity Oxy-Fuel (HVOF) Spraying. 3.6.1 History. 3.6.2 Principles. 3.6.3 Process Parameters. 3.6.4 Coating Properties. 3.7 Vacuum Plasma Spraying (VPS). 3.7.1 History. 3.7.2 Principles. 3.7.3 Process Parameters. 3.7.4 Coating Properties. 3.8 Controlled-Atmosphere Plasma Spraying (CAPS). 3.8.1 History. 3.8.2 Principles. 3.8.3 Process Parameters. 3.8.4 Coating Properties. 3.9 Cold-Gas Spraying Method (CGSM). 3.9.1 History. 3.9.2 Principles. 3.9.3 Process Parameters. 3.9.4 Coating Properties. 3.10 New Developments in Thermal Spray Techniques. References. 4 Post-Spray Treatment. 4.1 Heat Treatment. 4.1.1 Electromagnetic Treatment. 4.1.2 Furnace Treatment. 4.1.3 Hot Isostatic Pressing (HIP). 4.1.4 Combustion Flame Re-melting. 4.2 Impregnation. 4.2.1 Inorganic Sealants. 4.2.2 Organic Sealants. 4.3 Finishing. 4.3.1 Grinding. 4.3.2 Polishing and Lapping. References. 5 Physics and Chemistry of Thermal Spraying. 5.1 Jets and Flames. 5.1.1 Properties of Jets and Flames. 5.2 Momentum Transfer between Jets or Flames and Sprayed Particles. 5.2.1 Theoretical Description. 5.2.2 Experimental Determination of Sprayed Particles' Velocities. 5.2.3 Examples of Experimental Determination of Particles Velocities. 5.3 Heat Transfer between Jets or Flames and Sprayed Particles. 5.3.1 Theoretical Description. 5.3.2 Methods of Particles' Temperature Measurements. 5.4 Chemical Modification at Flight of Sprayed Particles. References. 6 Coating Build-Up. 6.1 Impact of Particles. 6.1.1 Particle Deformation. 6.1.2 Particle Temperature at Impact. 6.1.3 Nucleation, Solidification and Crystal Growth. 6.1.4 Mechanisms of Adhesion. 6.2 Coating Growth. 6.2.1 Mechanism of Coating Growth. 6.2.2 Temperature of Coatings at Spraying. 6.2.3 Generation of Thermal Stresses at Spraying. 6.2.4 Coatings Surfaces. 6.3 Microstructure of the Coatings. 6.3.1 Crystal Phase Composition. 6.3.2 Coatings' Inhomogeneity. 6.3.3 Final Microstructure of Sprayed Coatings. 6.4 Thermally Sprayed Composites. 6.4.1 Classification of Sprayed Composites. 6.4.2 Composite Coating Manufacturing. References. 7 Methods of Coatings' Characterization. 7.1 Methods of Microstructure Characterization. 7.1.1 Methods of Chemical Analysis. 7.1.2 Crystallographic Analyses. 7.1.3 Microstructure Analyses. 7.1.4 Other Applied Methods. 7.2 Mechanical Properties of Coatings. 7.2.1 Adhesion Determination. 7.2.2 Hardness and Microhardness. 7.2.3 Elastic Moduli, Strength and Ductility. 7.2.4 Properties Related to Mechanics of Coating Fracture. 7.2.5 Friction and Wear. 7.2.6 Residual Stresses. 7.3 Physical Properties of Coatings. 7.3.1 Thickness, Porosity and Density. 7.3.2 Thermophysical Properties. 7.3.3 Thermal Shock Resistance. 7.4 Electrical Properties of Coatings. 7.4.1 Electrical Conductivity. 7.4.2 Properties of Dielectrics. 7.4.3 Electron Emission from Surfaces. 7.5 Magnetic Properties of Coatings. 7.6 Chemical Properties of Coatings. 7.6.1 Aqueous Corrosion. 7.6.2 Hot-gas Corrosion. 7.7 Characterization of Coatings' Quality. 7.7.1 Acoustical Methods. 7.7.2 Thermal Methods. References. 8 Properties of Coatings. 8.1 Design of Experiments. 8.2 Mechanical Properties. 8.2.1 Hardness and Microhardness. 8.2.2 Tensile Adhesion Strength. 8.2.3 Elastic Moduli, Strengths and Fracture Toughness. 8.2.4 Friction and Wear. 8.3 Thermophysical Properties. 8.3.1 Thermal Conductivity and Diffusivity. 8.3.2 Specific Heat. 8.3.3 Thermal Expansion. 8.3.4 Emissivity. 8.3.5 Thermal Shock Resistance. 8.4 Electric Properties. 8.4.1 Properties of Conductors. 8.4.2 Properties of Resistors. 8.4.3 Properties of Dielectrics. 8.4.4 Electric Field Emitters. 8.4.5 Properties of Superconductors. 8.5 Magnetic Properties. 8.5.1 Soft Magnets. 8.5.2 Hard Magnets. 8.6 Optical Properties. 8.6.1 Decorative Coatings. 8.6.2 Optically Functional Coatings. 8.7 Corrosion Resistance. 8.7.1 Aqueous Corrosion. 8.7.2 Hot-medium Corrosion. References. 9 Applications of Coatings. 9.1 Aeronautical and Space Industries. 9.1.1 Aero-engines. 9.1.2 Landing-gear Components. 9.1.3 Rocket Thrust-chamber Liners. 9.2 Agroalimentary Industry. 9.3 Automobile Industry. 9.4 Ceramics Industry. 9.4.1 Free-standing Samples. 9.4.2 Brick-Clay Extruders. 9.4.3 Crucibles to Melt Oxide Ceramics. 9.4.4 Ceramic Membranes. 9.5 Chemical Industry. 9.5.1 Photocatalytic Surfaces. 9.5.2 Tools in Petrol Search Installations. 9.5.3 Vessels in Chemical Refineries. 9.5.4 Gas-well Tubing. 9.5.5 Polymeric Coatings on Pipeline Components. 9.5.6 Ozonizer Tubes. 9.6 Civil Engineering. 9.7 Decorative Coatings. 9.8 Electronics Industry. 9.8.1 Heaters. 9.8.2 Sources for Sputtering. 9.8.3 Substrates for Hybrid Microelectronics. 9.8.4 Capacitor Electrodes. 9.8.5 Conductor Paths for Hybrid Electronics. 9.8.6 Microwave Integrated Circuits. 9.9 Energy Generation and Transport. 9.9.1 Solid-oxide Fuel Cell (SOFCs). 9.9.2 Thermopile Devices for Thermoelectric Generators. 9.9.3 Boilers in Power-generation Plants. 9.9.4 Stationary Gas Turbines. 9.9.5 Hydropower Stations. 9.9.6 MHD Generators. 9.10 Iron and Steel Industries. 9.10.1 Continuous Annealing Line (CAL). 9.10.2 Continuous Galvanizing Section. 9.10.3 Stave Cooling Pipes. 9.11 Machine Building Industry. 9.12 Medicine. 9.13 Mining Industry. 9.14 Non-ferrous Metal Industry. 9.14.1 Hot-extrusion Dies. 9.14.2 Protective Coatings against Liquid Copper. 9.14.3 Protective Coatings against Liquid Zirconium. 9.15 Nuclear Industry. 9.15.1 Components of Tokamak Device. 9.15.2 Magnetic-fusion Energy Device. 9.16 Paper Industry. 9.16.1 Dryers. 9.16.2 Gloss Calender Rolls. 9.16.3 Tubing in Boilers. 9.17 Printing and Packaging Industries. 9.17.1 Corona Rolls. 9.17.2 Anilox Rolls. 9.18 Shipbuiding and Naval Industries. 9.18.1 Marine Gas-turbine Engines. 9.18.2 Steam Valve Stems. 9.18.3 Non-skid Helicopter Flight Deck. References. Index.

1,688 citations

Book ChapterDOI
TL;DR: In this article, the authors discuss heat transfer and skin friction in turbulent pipe flow with variable physical properties and highlight analytical methods to describe heat transfer mechanisms for constant liquid properties quite satisfactorily and to take into account the influence of the variation of physical properties with temperature versus heat transfer.
Abstract: Publisher Summary This chapter discusses heat transfer and skin friction in turbulent pipe flow with variable physical properties. The constant properties solution has been considered only so far as is necessary for the flow and heat transfer analysis with variable physical properties. The chapter highlights analytical methods to describe heat transfer mechanisms for constant liquid properties quite satisfactorily and to take into account the influence of the variation of physical properties with temperature versus heat transfer and skin friction in a number of important cases. Disagreement between theoretical and experimental results observed in other cases, in particular, with a considerable change in physical properties over the flow cross section, may be attributed to imperfect methods of estimating the effect of the variation of physical properties on turbulent diffusivity. Important experimental material has been accumulated on heat transfer and skin friction for variable physical properties. However, certain portions of this material possess relatively low accuracy that prevents its successful use. For a number of important cases, there has been no systematic data collection or that which is available is scanty and contradictory. Therefore, the need for further experimental investigations, with a high degree of accuracy, into the fluid mechanics and heat transfer for variable physical properties is quite urgent.

1,450 citations

Journal ArticleDOI
R.A. Oriani1
TL;DR: In this paper, the mobility of dissolved hydrogen in an iron lattice having a population of extraordinary, or trapping, sites for hydrogen is analyzed under the assumption of local equilibrium between the mobile and the trapped populations.

1,323 citations

Journal ArticleDOI
TL;DR: In this article, the evaporation of a sessile droplet with a pinned contact line was investigated experimentally, by analytic theory and by computation using the finite element method (FEM).
Abstract: The evaporation of a sessile droplet with a pinned contact line is investigated experimentally, by analytic theory and by computation using the finite element method (FEM). Because of the low value of R2/Dtf = cv(1 − H)/ρ = 1.4 × 10-5, where R is the contact-line radius, D is the water vapor diffusivity, cv is the saturated water vapor concentration, H is the relative humidity, and ρ is the liquid water density, the evaporation can be considered as a quasi-steady-state process. Hence, the vapor concentration distribution above the droplet satisfies the Laplace equation but with a time-varying droplet surface. It is found both theoretically and experimentally that the net evaporation rate from the droplet remains almost constant with time for a small initial contact angle (θ < 40°), even though the evaporation flux becomes more strongly singular at the edge of the droplet as the contact angle decreases during evaporation. We also measured the critical contact angle at which the contact line starts to reced...

1,302 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
87% related
Oxide
213.4K papers, 3.6M citations
83% related
Adsorption
226.4K papers, 5.9M citations
83% related
Turbulence
112.1K papers, 2.7M citations
83% related
Dielectric
169.7K papers, 2.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023772
20221,603
2021828
2020788
2019862
2018797