Topic
Thermal energy storage
About: Thermal energy storage is a research topic. Over the lifetime, 32114 publications have been published within this topic receiving 439296 citations. The topic is also known as: TES.
Papers published on a yearly basis
Papers
More filters
Book•
[...]
01 Jan 1980
TL;DR: In this article, the authors present an active and passive building heating system for solar thermal power systems, where the active system is designed by f--chart and the passive one by Utilizability Methods.
Abstract: FUNDAMENTALS. Solar Radiation. Available Solar Radiation. Selected Heat Transfer Topics. Radiation Characteristics of Opaque Materials. Radiation Transmission Through Glazing: Absorbed Radiation. Flat--Plate Collectors. Concentrating Collectors. Energy Storage. Solar Process Loads. System Thermal Calculations. Solar Process Economics. APPLICATIONS. Solar Water Heating----Active and Passive. Building Heating----Active. Building Heating: Passive and Hybrid Methods. Cooling. Industrial Process Heat. Solar Thermal Power Systems. Solar Ponds: Evaporative Processes. THERMAL DESIGN METHODS. Simulations in Solar Process Design. Design of Active Systems by f--Chart. Design of Active Systems by Utilizability Methods. Design of Passive and Hybrid Heating Systems. Design of Photovoltaic Systems. Appendices. Author Index. Subject Index.
9,385 citations
[...]
TL;DR: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high energy storage density and the isothermal nature of the storage process.
Abstract: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.
3,746 citations
[...]
TL;DR: In this paper, a review of the history of thermal energy storage with solid-liquid phase change has been carried out and three aspects have been the focus of this review: materials, heat transfer and applications.
Abstract: Thermal energy storage in general, and phase change materials (PCMs) in particular, have been a main topic in research for the last 20 years, but although the information is quantitatively enormous, it is also spread widely in the literature, and difficult to find. In this work, a review has been carried out of the history of thermal energy storage with solid–liquid phase change. Three aspects have been the focus of this review: materials, heat transfer and applications. The paper contains listed over 150 materials used in research as PCMs, and about 45 commercially available PCMs. The paper lists over 230 references.
3,637 citations
[...]
TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Abstract: Electrical energy storage technologies for stationary applications are reviewed. Particular attention is paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage, flywheel, capacitor/supercapacitor, and thermal energy storage. Comparison is made among these technologies in terms of technical characteristics, applications and deployment status.
2,533 citations
[...]
TL;DR: In this paper, a review of the phase change materials (PCM) and their application in energy storage is presented, where the main advantages of encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs.
Abstract: Latent heat storage is one of the most efficient ways of storing thermal energy. Unlike the sensible heat storage method, the latent heat storage method provides much higher storage density, with a smaller temperature difference between storing and releasing heat. This paper reviews previous work on latent heat storage and provides an insight to recent efforts to develop new classes of phase change materials (PCMs) for use in energy storage. Three aspects have been the focus of this review: PCM materials, encapsulation and applications. There are large numbers of phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area. Hydrated salts have larger energy storage density and higher thermal conductivity but experience supercooling and phase segregation, and hence, their application requires the use of some nucleating and thickening agents. The main advantages of PCM encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs. The different applications in which the phase change method of heat storage can be applied are also reviewed in this paper. The problems associated with the application of PCMs with regards to the material and the methods used to contain them are also discussed.
2,338 citations