scispace - formally typeset
Search or ask a question
Topic

Thermal expansion

About: Thermal expansion is a research topic. Over the lifetime, 21040 publications have been published within this topic receiving 349407 citations. The topic is also known as: heat expansion.


Papers
More filters
Journal ArticleDOI
H. Kashiwagi1, T. Hashimoto1, Yoshiaki Tanaka1, Hironobu Kubota1, T. Makita1 
TL;DR: In this article, the Tait-type equations and empirical polynomials for thermal conductivity and density of liquid toluene were presented in the temperature range 0 −100°C at pressures up to 250 MPa.
Abstract: New experimental data on the thermal conductivity and the density of liquid toluene are presented in the temperature range 0–100°C at pressures up to 250 MPa. The measurements of thermal conductivity were performed with a transient hot-wire apparatus on an absolute basis with an inaccuracy less than 1.0%. The density was measured with a high-pressure burette method with an uncertainty within 0.1%. The experimental results for both properties are represented satisfactorily by the Tait-type equations, as well as empirical polynomials, covering the entire ranges of temperature and pressure. Furthermore, it is found that simple relations exist between the temperature dependence of thermal conductivity and the thermal expansion coefficient, and also between the pressure dependence of thermal conductivity and the isothermal compressibility, as are suggested theoretically.

106 citations

Journal ArticleDOI
TL;DR: In this paper, first-principles calculations have been used to determine the equation of state of Fe3C in both its low-pressure magnetically ordered and high-pressure non-magnetically ordered states; at 0 K the ferromagnetic transition was found to occur at about 60 GPa.

105 citations

Journal ArticleDOI
TL;DR: In this article, a splitting shift between Fe and Ti atoms was found along the c axis in 0.7PbTiO3−0.3BiFeO3; however, this splitting does not appear in the tetragonal phase.
Abstract: The structures of (1−x)PbTiO3–xBiFeO3 (x=0.3 and 0.6) were investigated by means of the neutron powder diffraction. A splitting shift between Fe and Ti atoms was found along the c axis in 0.7PbTiO3–0.3BiFeO3; however, this splitting does not appear in 0.4PbTiO3–0.6BiFeO3. The tetragonal phase of PbTiO3–BiFeO3 exhibits a large spontaneous polarization. The negative thermal expansion of PbTiO3 is significantly enhanced in a wide temperature range by the BiFeO3 substitution. The average bulk thermal expansion coefficient of 0.4PbTiO3–0.6BiFeO3 is a¯v=−3.92×10−5°C−1, which is much strong in the known negative thermal expansion oxides.

105 citations

Journal ArticleDOI
TL;DR: In this paper, thermal expansion, specific heat and thermal conductivity have been determined from 1000°C to near the destruction temperature of molybdenum (m.p. 2620°C), tantalum and four types of graphite (sublimes at 3650°C).

105 citations

Journal ArticleDOI
TL;DR: In this paper, a hard gabbro was tested in the laboratory and it was found that there is a critical temperature above which drastic changes in mechanical properties occur and microcracks start developing due to a difference in the thermal expansion coefficients of the crystals.
Abstract: Thermal loading of rocks at high temperatures induces changes in their mechanical properties. In this study, a hard gabbro was tested in the laboratory. Specimens were slowly heated to a maximum temperature of 1,000°C. Subsequent to the thermal loading, specimens were subjected to uniaxial compression. A drastic decrease of both unconfined compressive strength and elastic moduli was observed. The thermal damage of the rock was also highlighted by measuring elastic wave velocities and by monitoring acoustic emissions during testing. The micromechanisms of rock degradation were investigated by analysis of thin sections after each stage of thermal loading. It was found that there is a critical temperature above which drastic changes in mechanical properties occur. Indeed, below a temperature of 600°C, microcracks start developing due to a difference in the thermal expansion coefficients of the crystals. At higher temperatures (above 600°C), oxidation of Fe2+ and Mg2+, as well as bursting of fluid inclusions, are the principal causes of damage. Such mechanical degradation may have dramatic consequences for many geoengineering structures.

105 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
89% related
Oxide
213.4K papers, 3.6M citations
89% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Dielectric
169.7K papers, 2.7M citations
88% related
Silicon
196K papers, 3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023603
20221,249
2021683
2020742
2019759
2018767