scispace - formally typeset
Search or ask a question
Topic

Thermal expansion

About: Thermal expansion is a research topic. Over the lifetime, 21040 publications have been published within this topic receiving 349407 citations. The topic is also known as: heat expansion.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the amplitude of out-of-plane thermal fluctuation is calculated for graphene membranes under both zero stress and zero strain conditions, and it is found that the fluctuation amplitude follows a power-law scaling with respect to the linear dimension of the membrane, but the roughness exponents are different for the two conditions due to anharmonic interactions between bending and stretching modes.
Abstract: Thermomechanical properties of monolayer graphene with thermal fluctuation are studied by both statistical mechanics analysis and molecular dynamics (MD) simulations. While the statistical mechanics analysis in the present study is limited by a harmonic approximation, significant anharmonic effects are revealed by MD simulations. The amplitude of out-ofplane thermal fluctuation is calculated for graphene membranes under both zero stress and zero strain conditions. It is found that the fluctuation amplitude follows a power-law scaling with respect to the linear dimension of the membrane, but the roughness exponents are different for the two conditions due to anharmonic interactions between bending and stretching modes. Such thermal fluctuation or rippling is found to be responsible for the effectively negative in-plane thermal expansion of graphene at relatively low temperatures, while a transition to positive thermal expansion is predicted as the anharmonic interactions suppress the rippling effect at high temperatures. Subject to equi-biaxial tension, the amplitude of thermal rippling decreases nonlinearly, and the in-plane stress-strain relation of graphene becomes nonlinear even at infinitesimal strain, in contrast with classical theory of linear elasticity. It is found that the tangent biaxial modulus of graphene depends on strain non-monotonically, decreases with increasing temperature, and depends on membrane size. Both statistical mechanics and MD simulations suggest considerable entropic contribution to the thermomechanical properties of graphene, and as a result thermal rippling is intricately coupled with thermal expansion and thermoelasticity for monolayer graphene membranes.

142 citations

Journal ArticleDOI
TL;DR: In this article, the thermal stress distribution in a tubular solid oxide fuel cell (SOFC) was calculated separately for each layer of the MEA (membrane electrode assembly) in order to detect the radial thermal gradients more precisely.

142 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the entropy generation due to conjugate natural convection-conduction heat transfer in a square domain under steady-state condition, and the results showed that both the average Nusselt number and entropy generation are increasing functions of K ro while they are maxima at some critical values of D.
Abstract: Entropy generation due to conjugate natural convection–conduction heat transfer in a square domain is numerically investigated under steady-state condition. The domain composed of porous cavity heated by a triangular solid wall and saturated with a CuO–water nanofluid. Equations governing the heat transfer in the triangular solid together with the heat and nanofluid flow in the nanofluid-saturated porous medium are solved numerically using the over-successive relaxation finite-difference method. A temperature dependent thermal conductivity and modified expression for the thermal expansion of nanofluid are adopted. A new criterion for assessment of the thermal performance is proposed. The investigated parameters are the nanoparticles volume fraction φ (0–0.05), modified Rayleigh number Ra (10–1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio K ro (0.44, 1, 23.8), and the triangular solid thickness D (0.1–1). The results show that both the average Nusselt number and the entropy generation are increasing functions of K ro , while they are maxima at some critical values of D . It is also found that the addition of nanoparticles increases the entropy generation. According to the new proposed criterion, the results show that the largest solid thickness ( D = 1.0) and the lower wall thermal conductivity ratio manifest better thermal performance.

142 citations

Journal ArticleDOI
TL;DR: In this article, P-V-T relations were measured over 026-18 K with concentration on regions near the melting curve with a cell whose volume was varied with diaphragms, the positions of which determined the volume and pressure.
Abstract: Liquid and solid3He P-V-T relations were measured over 026–18 K with concentration on regions near the melting curve The method used a cell whose volume was varied with diaphragms, the positions of which determined the volume and pressure The molar volumes of liquidV lm and solidV sm along the melting curve were consistent with the directly measured volume change on melting ΔV m Below 1 K,V lm , Vsm, and ΔV m were greater than previous results Along the melting curve, the compressibility of the solid became greater than the compressibility of the liquid atT<12 K, the difference rising to 12% at 032 K The thermal expansion of the solid became negative below 030–035 K The melting curve minimum was measured at 28932±0003 atm and 0319±0003 K Starting with the minimum, the melting curve was calculated to 002 K, where it should be useful in thermometry A set of self-consistent data is presented

142 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks and compare the thermoelectric efficiency of segmented materials.
Abstract: The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivity, and Seebeck coefficient were performed up to 1173 K and compared with literature results. Dilatometry measurements give a coefficient of thermal expansion of 16×10^−6 K^−1 up to 1175 K. The trend in electronic properties with composition is typical of a heavily doped semiconductor. The maximum in the thermoelectric figure of merit is found at 1050 K with a value of 0.8. The correction of zT due to thermal expansion is not significant compared to the measurement uncertainties involved. Comparing the thermoelectric efficiency of segmented materials, the effect of compatibility makes Ba8Ga16Ge30 more efficient than the higher zT n-type materials SiGe or skutterudite CoSb3.

142 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
89% related
Oxide
213.4K papers, 3.6M citations
89% related
Raman spectroscopy
122.6K papers, 2.8M citations
88% related
Dielectric
169.7K papers, 2.7M citations
88% related
Silicon
196K papers, 3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023603
20221,249
2021683
2020742
2019759
2018767