Topic

# Thermal radiation

About: Thermal radiation is a(n) research topic. Over the lifetime, 12290 publication(s) have been published within this topic receiving 197186 citation(s). The topic is also known as: heat radiation.

##### Papers published on a yearly basis

##### Papers

More filters

01 Jan 1981

TL;DR: In this article, a comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation, and the use of the Monte Carlo technique in solving radiant exchange problems and problems of radiative transfer through absorbing-emitting media.

Abstract: A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

5,853 citations

•

01 Jan 1971TL;DR: In this paper, a comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation, and the use of the Monte Carlo technique in solving radiant exchange problems and problems of radiative transfer through absorbing-emitting media.

Abstract: A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

5,391 citations

•

31 Mar 2002TL;DR: In this paper, the authors discuss the physics of gas dynamics and classical theory of shock waves, including thermal radiation and radiant heat exchange in a medium, and some self-similar processes in gas dynamics.

Abstract: : Contents: Elements of gas dynamics and classical theory of shock waves; thermal radiation and radiant heat exchange in a medium; thermodynamic properties of gases at high temperatures; shock tubes; absorption and emission of radiation in gases at high temperatures; speed of relaxation processes in gases; structure of front of shock waves in gases; physico-chemical kinetics in hydrodynamic processes; light phenomena in shock waves and during strong explosion in air; thermal waves; shock waves in solids; certain self-similar processes in gas dynamics.

3,559 citations

•

01 Jan 1979

TL;DR: Inverse square law for a uniformly bright sphere as discussed by the authors is used to define specific intensity and its moments, which is defined as the specific intensity or brightness of a sphere in terms of specific intensity.

Abstract: Chapter 1 Fundamentals of Radiative Transfer 1.1 The Electromagnetic Spectrum Elementary Properties of Radiation 1.2 Radiative Flux Macroscopic Description of the Propagation of Radiation Flux from an Isotropic Source-The Inverse Square Law 1.3 The Specific Intensity and Its Moments Definition of Specific Intensity or Brightness Net Flux and Momentum Flux Radiative Energy Density Radiation Pressure in an Enclosure Containing an Isotropic Radiation Field Constancy of Specific Intensity Along Rays in Free Space Proof of the Inverse Square Law for a Uniformly Bright Sphere 1.4 Radiative Transfer Emission Absorption The Radiative Transfer Equation Optical Depth and Source Function Mean Free Path Radiation Force 1.5 Thermal Radiation Blackbody Radiation Kirchhoff's Law for Thermal Emission Thermodynamics of Blackbody Radiation The Planck Spectrum Properties of the Planck Law Characteristic Temperatures Related to Planck Spectrum 1.6 The Einstein Coefficients Definition of Coefficients Relations between Einstein Coefficients Absorption and Emission Coefficients in Terms of Einstein Coefficients 1.7 Scattering Effects Random Walks Pure Scattering Combined Scattering and Absorption 1.8 Radiative Diffusion The Rosseland Approximation The Eddington Approximation Two-Stream Approximation Problems References Chapter 2 Basic Theory of Radiation Fields 2.1 Review of Maxwell's Equations 2.2 Plane Electromagnetic Waves 2.3 The Radiation Spectrum 2.4 Polarization and Stokes Parameters 62 Monochromatic Waves Quasi-monochromatic Waves 2.5 Electromagnetic Potentials 2.6 Applicability of Transfer Theory and the Geometrical Optics Limit Problems References Chapter 3 Radiation from Moving Charges 3.1 Retarded Potentials of Single Moving Charges: The Lienard-Wiechart Potentials 3.2 The Velocity and Radiation Fields 3.3 Radiation from Nonrelativistic Systems of Particles Larmor's Formula The Dipole Approximation The General Multipole Expansion 3.4 Thomson Scattering (Electron Scattering) 3.5 Radiation Reaction 3.6 Radiation from Harmonically Bound Particles Undriven Harmonically Bound Particles Driven Harmonically Bound Particles Problems Reference Chapter 4 Relativistic Covariance and Kinematics 4.1 Review of Lorentz Transformations 4.2 Four-Vectors 4.3 Tensor Analysis 4.4 Covariance of Electromagnetic Phenomena 4.5 A Physical Understanding of Field Transformations 129 4.6 Fields of a Uniformly Moving Charge 4.7 Relativistic Mechanics and the Lorentz Four-Force 4.8 Emission from Relativistic Particles Total Emission Angular Distribution of Emitted and Received Power 4.9 Invariant Phase Volumes and Specific Intensity Problems References Chapter 5 Bremsstrahlung 5.1 Emission from Single-Speed Electrons 5.2 Thermal Bremsstrahlung Emission 5.3 Thermal Bremsstrahlung (Free-Free) Absorption 5.4 Relativistic Bremsstrahlung Problems References Chapter 6 Synchrotron Radiation 6.1 Total Emitted Power 6.2 Spectrum of Synchrotron Radiation: A Qualitative Discussion 6.3 Spectral Index for Power-Law Electron Distribution 6.4 Spectrum and Polarization of Synchrotron Radiation: A Detailed Discussion 6.5 Polarization of Synchrotron Radiation 6.6 Transition from Cyclotron to Synchrotron Emission 6.7 Distinction between Received and Emitted Power 6.8 Synchrotron Self-Absorption 6.9 The Impossibility of a Synchrotron Maser in Vacuum Problems References Chapter 7 Compton Scattering 7.1 Cross Section and Energy Transfer for the Fundamental Process Scattering from Electrons at Rest Scattering from Electrons in Motion: Energy Transfer 7.2 Inverse Compton Power for Single Scattering 7.3 Inverse Compton Spectra for Single Scattering 7.4 Energy Transfer for Repeated Scatterings in a Finite, Thermal Medium: The Compton Y Parameter 7.5 Inverse Compton Spectra and Power for Repeated Scatterings by Relativistic Electrons of Small Optical Depth 7.6 Repeated Scatterings by Nonrelativistic Electrons: The Kompaneets Equation 7.7 Spectral Regimes for Repeated Scattering by Nonrelativistic Electrons Modified Blackbody Spectra y"1 Wien Spectra y"1 Unsaturated Comptonization with Soft Photon Input Problems References Chapter 8 Plasma Effects 8.1 Dispersion in Cold, Isotropic Plasma The Plasma Frequency Group and Phase Velocity and the Index of Refraction 8.2 Propagation Along a Magnetic Field Faraday Rotation 8.3 Plasma Effects in High-Energy Emission Processes Cherenkov Radiation Razin Effect Problems References Chapter 9 Atomic Structure 9.1 A Review of the Schrodinger Equation 9.2 One Electron in a Central Field Wave Functions Spin 9.3 Many-Electron Systems Statistics: The Pauli Principle Hartree-Fock Approximation: Configurations The Electrostatic Interaction LS Coupling and Terms 9.4 Perturbations, Level Splittings, and Term Diagrams Equivalent and Nonequivalent Electrons and Their Spectroscopic Terms Parity Spin-Orbit Coupling Zeeman Effect Role of the Nucleus Hyperfine Structure 9.5 Thermal Distribution of Energy Levels and Ionization Thermal Equilibrium: Boltzmann Population of Levels The Saha Equation Problems References Chapter 10 Radiative Transitions 10.1 Semi-Classical Theory of Radiative Transitions The Electromagnetic Hamiltonian The Transition Probability 10.2 The Dipole Approximation 10.3 Einstein Coefficients and Oscillator Strengths 10.4 Selection Rules 10.5 Transition Rates Bound-Bound Transitions for Hydrogen Bound-Free Transitions (Continuous Absorption) for Hydrogen Radiative Recombination - Milne Relations The Role of Coupling Schemes in the Determination of f Values 10.6 Line Broadening Mechanisms Doppler Broadening Natural Broadening Collisional Broadening Combined Doppler and Lorentz Profiles Problems References Chapter 11 Molecular Structure 11.1 The Born-Oppenheimer Approximation: An Order of Magnitude Estimate of Energy Levels 11.2 Electronic Binding of Nuclei The H2+ Ion The H2 Molecule 11.3 Pure Rotation Spectra Energy Levels Selection Rules and Emission Frequencies 11.4 Rotation-Vibration Spectra Energy Levels and the Morse Potential Selection Rules and Emission Frequencies 11.5 Electronic-Rotational-Vibrational Spectra Energy Levels Selection Rules and Emission Frequencies Problems References Solutions Index

3,240 citations

••

TL;DR: This Letter demonstrates, for the first time, selective thermal emitters based on metamaterial perfect absorbers and finds that emissivity and absorptivity agree very well as predicted by Kirchhoff's law of thermal radiation.

Abstract: In this Letter we demonstrate, for the first time, selective thermal emitters based on metamaterial perfect absorbers. We experimentally realize a narrow band midinfrared (MIR) thermal emitter. Multiple metamaterial sublattices further permit construction of a dual-band MIR emitter. By performing both emissivity and absorptivity measurements, we find that emissivity and absorptivity agree very well as predicted by Kirchhoff's law of thermal radiation. Our results directly demonstrate the great flexibility of metamaterials for tailoring blackbody emission.

1,141 citations