scispace - formally typeset
Search or ask a question
Topic

Thermal radiation

About: Thermal radiation is a research topic. Over the lifetime, 12290 publications have been published within this topic receiving 197186 citations. The topic is also known as: heat radiation.


Papers
More filters
Journal ArticleDOI
Ali J. Chamkha1
TL;DR: Similarity equations governing steady hydromagnetic boundary-layer flow over an accelerating permeable surface in the presence of such effects as thermal radiation, thermal buoyancy, and heat generation or absorption effects are obtained in this article.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the steady-state, hydromagnetic forced convective boundary-layer flow of an incompressible Newtonian, electrically-conducting and heat-generating/absorbing fluid over a non-isothermal wedge in the presence of thermal radiation effects is considered.
Abstract: This work is focused on the steady-state, hydromagnetic forced convective boundary-layer flow of an incompressible Newtonian, electrically-conducting and heat-generating/absorbing fluid over a non-isothermal wedge in the presence of thermal radiation effects. The wedge surface is assumed permeable so as to allow for possible wall suction or injection. Also included in the model are the effects of viscous dissipation, Joule heating and stress work. The governing partial differential equations for this investigation are derived and transformed using a non-similarity transformation. In deriving the governing equations, a temperature-dependent heat source or sink term is employed and the Rossland approximation for the thermal radiation term is assumed to be valid. The obtained non-similar equations are solved numerically by an implicit, iterative, tri-diagonal finite-difference method. Comparisons with previously published work on various special cases of the problem are performed and the results are found to be in excellent agreement. Numerical results for the velocity and temperature profiles for a prescribed magnetic parameter as well as the development of the local skin-friction coefficient and local Nusselt number with the magnetic parameter are presented graphically and discussed. This is done in order to elucidate the influence of the various parameters involved in the problem on the solution.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the feasibility of energy conversion devices that exploit micro-scale radiative transfer of thermal energy in thermophotovoltaic devices was analyzed, and the results for the performance of a device based on indium gallium arsenide indicate that a ten-fold increase in power throughput may be realized with little loss in efficiency.
Abstract: We analyze the feasibility of energy conversion devices that exploit microscale radiative transfer of thermal energy in thermophotovoltaic devices. By bringing a hot source of thermal energy very close to a receiver fashioned as a pn-junction, the near-field effect of radiation tunneling can enhance the net power flux. We use the fluctuational electrodynamic approach to microscale radiative transfer to account for the spacing effect, which provides the net transfer of photons to the receiver as a function of the separation between the emitter and receiver. We calculate the power output from the microscale device using standard thermophotovoltaic device relations. The results for the performance of a device based on indium gallium arsenide indicate that a ten-fold increase in power throughput may be realized with little loss in efficiency. Furthermore, we develop a model of the microscale device itself that indicates the influence of semiconductor band-gap energy, carrier lifetime, and doping.

140 citations

Journal ArticleDOI
TL;DR: In this article, the effects of Joule-heating, chemical reaction and thermal radiation on unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid are analyzed.
Abstract: The effects of Joule-heating, chemical reaction and thermal radiation on unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid are analyzed. The partial differential equations governing the flow and heat and mass transfer have been solved numerically using an implicit finite-difference scheme. The case corresponding to vanishing of the anti-symmetric part of the stress tensor that represents weak concentrations is considered. The numerical results are validated by favorable comparisons with previously published results. A parametric study of the governing parameters, namely the magnetic field parameter, suction/injection parameter, radiation parameter, chemical reaction parameter, vortex viscosity parameter and the Eckert number on the linear velocity, angular velocity, temperature and the concentration profiles as well as the skin friction coefficient, wall couple stress coefficient, Nusselt number and the Sherwood number is conducted. A selected set of numerical results is presented graphically and discussed.

139 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of flow and heat transfer of an incompressible homogeneous second grade fluid over a non-isothermal stretching sheet in the presence of non-uniform internal heat generation/absorption is investigated.

139 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
89% related
Thermal conductivity
72.4K papers, 1.4M citations
87% related
Turbulence
112.1K papers, 2.7M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
83% related
Boundary layer
64.9K papers, 1.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023375
2022749
2021575
2020636
2019663
2018618