scispace - formally typeset
Search or ask a question
Topic

Thermodynamic equilibrium

About: Thermodynamic equilibrium is a research topic. Over the lifetime, 10752 publications have been published within this topic receiving 251502 citations. The topic is also known as: local thermodynamic equilibrium.


Papers
More filters
Journal ArticleDOI
Loup Verlet1
TL;DR: In this article, the equilibrium properties of a system of 864 particles interacting through a Lennard-Jones potential have been integrated for various values of the temperature and density, relative, generally, to a fluid state.
Abstract: The equation of motion of a system of 864 particles interacting through a Lennard-Jones potential has been integrated for various values of the temperature and density, relative, generally, to a fluid state. The equilibrium properties have been calculated and are shown to agree very well with the corresponding properties of argon. It is concluded that, to a good approximation, the equilibrium state of argon can be described through a two-body potential.

7,564 citations

Book ChapterDOI
TL;DR: In this article, the Boltzmann formula for lower temperatures has been developed for a correction term, which can be developed into a power series of h. The formula is developed for this correction by means of a probability function and the result discussed.
Abstract: The probability of a configuration is given in classical theory by the Boltzmann formula exp [— V/hT] where V is the potential energy of this configuration. For high temperatures this of course also holds in quantum theory. For lower temperatures, however, a correction term has to be introduced, which can be developed into a power series of h. The formula is developed for this correction by means of a probability function and the result discussed.

5,865 citations

Journal ArticleDOI
TL;DR: In this article, the melting points of small gold particles have been measured using a scanning electron-diffraction technique and the experimental results are quantitatively in good agreement with two phenomenological models.
Abstract: Recently, small particles have been shown to exhibit a melting temperature which depends on the particle size. The various possible experimental methods have been compared and measurements of the melting points of small gold particles have been made using a scanning electron-diffraction technique. This method was applied to particles having diameters down to 20 \AA{}. Consideration of the size distribution over an entire sample makes it necessary to carry out a careful analysis of the experimental results in order to deduce the melting temperature of particles having a well-defined diameter. The experimental results are quantitatively in good agreement with two phenomenological models. The first model describes the equilibrium condition for a system formed by a solid particle, a liquid particle having the same mass, and their saturating vapor phase. The second model assumes the preexistence of a liquid layer surrounding the solid particle and describes the equilibrium of such a system in the presence of the vapor phase. In order to permit a better comparison between both models, a new expression for the thermodynamic equilibrium condition has been derived in the present work. In the case of the first model, the agreement was obtained using only the physical constants of massive gold. In applying the second model, however, one is compelled to assume the existence of a liquid layer having a thickness of about 6 \AA{}.

3,074 citations

Journal ArticleDOI
TL;DR: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components and is highly efficient to compute on massively parallel computers.
Abstract: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components. Each of the components can be immiscible with the others and can have different mass values. The equilibrium state of each component can have a nonideal gas equation of state at a prescribed temperature exhibiting thermodynamic phase transitions. The scheme incorporated in this model is the introduction of an interparticle potential. The dynamical rules in this model are local so it is highly efficient to compute on massively parallel computers. This model has many applications in large-scale numerical simulations of various types of fluid flows.

2,719 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the basic physical concepts and the microstructural features of equilibrium and non-equilibrium nanostructured materials (NsM) and make an attempt to summarize their properties.

2,629 citations


Network Information
Related Topics (5)
Hydrogen
132.2K papers, 2.5M citations
87% related
Magnetic field
167.5K papers, 2.3M citations
87% related
Boundary value problem
145.3K papers, 2.7M citations
85% related
Turbulence
112.1K papers, 2.7M citations
85% related
Excited state
102.2K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202397
2022171
2021285
2020328
2019337
2018295