Topic
Thermoelectric generator
About: Thermoelectric generator is a research topic. Over the lifetime, 12233 publications have been published within this topic receiving 200139 citations. The topic is also known as: Thermoelectric element.
Papers published on a yearly basis
Papers
More filters
[...]
14 Jul 1995
TL;DR: In this article, Rowe et al. proposed a method for reducing the thermal conductivity of a thermoelectric generator by reducing the carrier concentration of the generator, which was shown to improve the generator's performance.
Abstract: Introduction, D.M. Rowe General Principles and Theoretical Considerations Thermoelectric Phenomena, D.D. Pollock Coversion Efficiency and Figure-of-Merit, H.J. Goldsmid Thermoelectric Transport Theory, C.M. Bhandari Optimization of Carrier Concentration, C.M. Bhandari and D.M. Rowe Minimizing the Thermal Conductivity, C.M. Bhandari Selective Carrier Scattering in Thermoelectric Materials, Y.I. Ravich Thermomagnetic Phenomena, H.J. Goldsmid Material Preparation Preparation of Thermoelectric Materials from Melts, A. Borshchevsky Powder Metallurgy Techniques, A.N. Scoville PIES Method of Preparing Bismuth Alloys, T. Ohta and T. Kajikawa Preparation of Thermoelectric Materials by Mechanical Alloying, B.A. Cook, J.L. Harringa, and S.H. Han Preparation of Thermoelectric Films, K. Matsubara, T. Koyanagi, K. Nagao, and K. Kishimoto Measurement of Thermoelectric Properties Calculation of Peltier Device Performance, R.J. Buist Measurements of Electrical Properties, I.A. Nishida Measurement of Thermal Properties, R. Taylor Z-Meters, H.H. Woodbury, L.M. Levinson, and S. Lewandowski Methodology for Testing Thermoelectric Materials and Devices, R.J. Buist Thermoelectric Materials Bismuth Telluride, Antimony Telluride, and Their Solid Solutions, H. Scherrer and S. Scherrer Valence Band Structure and the Thermoelectric Figure-of-Merit of (Bi1-xSbx)Te3 Crystals, M. Stordeur Lead Telluride and Its Alloys, V. Fano Properties of the General Tags System, E.A. Skrabek and D.S. Trimmer Thermoelectric Properties of Silicides, C.B. Vining Polycrystalline Iron Disilicide as a Thermoelectric Generator Material, U. Birkholz, E. Gross, and U. Stohrer Thermoelectric Properties of Anisotropic MnSi1.75 , V.K. Zaitsev Low Carrier Mobility Materials for Thermoelectric Applications, V.K. Zaitsev, S.A. Ktitorov, and M.I. Federov Semimetals as Materials for Thermoelectric Generators, M.I. Fedorov and V.K. Zaitsev Silicon Germanium, C.B. Vining Rare Earth Compounds, B.J. Beaudry and K.A. Gschneidner, Jr. Thermoelectric Properties of High-Temperature Superconductors, M. Cassart and J.-P. Issi Boron Carbides, T.L. Aselage and D. Emin Thermoelectric Properties of Metallic Materials, A.T. Burkov and M.V. Vedernikov Neutron Irradiation Damage in SiGe Alloys, J.W. Vandersande New Materials and Performance Limits for Thermoelectric Cooling, G.A. Slack Thermoelectric Generation Miniature Semiconductor Thermoelectric Devices, D.M. Rowe Commercially Available Generators, A.G. McNaughton Modular RTG Technology, R.F. Hartman Peltier Devices as Generators, G. Min and D.M. Rowe Calculations of Generator Performance, M.H. Cobble Generator Applications Terrestrial Applications of Thermoelectric Generators, W.C. Hall Space Applications, G.L. Bennett SP-100 Space Subsystems, J.F. Mondt Safety Aspects of Thermoelectrics in Space, G.L. Bennett Low-Temperature Heat Conversion, K. Matsuura and D.M. Rowe Thermoelectric Refrigeration Introduction, H.J. Goldsmid Module Design and Fabrication, R. Marlow and E. Burke Cooling Thermoelements with Superconducting Leg, M.V. Vedernikov and V.L. Kuznetsov Applications of Thermoelectric Cooling Introduction, H.J. Goldsmid Commercial Peltier Modules, K.-I. Uemura Thermoelectrically Cooled Radiation Detectors, L.I. Anatychuk Reliability of Peltier Coolers in Fiber-Optic Laser Packages, R.M. Redstall and R. Studd Laboratory Equipment, K.-I. Uemura Large-Scale Cooling: Integrated Thermoelectric Element Technology, J.G. Stockholm Medium-Scale Cooling: Thermoelectric Module Technology, J.G. Stockholm Modeling of Thermoelectric Cooling Systems, J.G. Stockholm
4,111 citations
[...]
TL;DR: In this article, the authors report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter.
Abstract: Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.
3,446 citations
[...]
TL;DR: A successful implementation through the use of the thallium impurity levels in lead telluride (PbTe) is reported, which results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin.
Abstract: The efficiency of thermoelectric energy converters is limited by the material thermoelectric figure of merit (zT). The recent advances in zT based on nanostructures limiting the phonon heat conduction is nearing a fundamental limit: The thermal conductivity cannot be reduced below the amorphous limit. We explored enhancing the Seebeck coefficient through a distortion of the electronic density of states and report a successful implementation through the use of the thallium impurity levels in lead telluride (PbTe). Such band structure engineering results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin. Use of this new physical principle in conjunction with nanostructuring to lower the thermal conductivity could further enhance zT and enable more widespread use of thermoelectric systems.
2,937 citations
[...]
TL;DR: It is demonstrated that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition, leading to an extraordinary zT value of 1.8 at about 850 kelvin.
Abstract: Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems—such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known, that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe_(1) − _(x)Se_(x) alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity.
2,553 citations
[...]
TL;DR: In the temperature range 600 to 900 kelvin, the AgPbmSbTe2+m material is expected to outperform all reported bulk thermoelectrics, thereby earmarking it as a material system for potential use in efficient thermoeLECTric power generation from heat sources.
Abstract: The conversion of heat to electricity by thermoelectric devices may play a key role in the future for energy production and utilization. However, in order to meet that role, more efficient thermoelectric materials are needed that are suitable for high-temperature applications. We show that the material system AgPb m SbTe 2+ m may be suitable for this purpose. With m = 10 and 18 and doped appropriately, n -type semiconductors can be produced that exhibit a high thermoelectric figure of merit material ZT max of ∼2.2 at 800 kelvin. In the temperature range 600 to 900 kelvin, the AgPb m SbTe 2+ m material is expected to outperform all reported bulk thermoelectrics, thereby earmarking it as a material system for potential use in efficient thermoelectric power generation from heat sources.
2,549 citations