scispace - formally typeset
Search or ask a question
Topic

Thermogravimetric analysis

About: Thermogravimetric analysis is a research topic. Over the lifetime, 37248 publications have been published within this topic receiving 862144 citations. The topic is also known as: thermal gravimetric analysis & TGA.


Papers
More filters
Journal ArticleDOI
04 May 2016-Polymers
TL;DR: Results of this study showed that thermal decomposition temperature depends on the polymer ratio (R) and thermal resistance of samples was improved by increasing chitosan dosage, and polyelectrolyte complexation led to obtain more flexible and resistant to mechanical deformation materials.
Abstract: Biomaterials based on polyelectrolyte complexation are an innovative concept of coatings and packaging production to be applied in a wide range of food products. The aim of this study was to obtain and characterize a sodium alginate–chitosan complex material with variable degree of polyion interactions by complexation of oppositely charged polysaccharides. In order to characterize polyelectrolyte complexes, theromogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), matrix-assisted laser desorption/ionization technique with time of flight analyzer (MALDI-TOF), and scanning electron microscopy (SEM) were performed. TGA analysis showed that thermal decomposition temperature depends on the polymer ratio (R) and thermal resistance of samples was improved by increasing chitosan dosage. Accordingly to DMTA results, polyelectrolyte complexation led to obtain more flexible and resistant to mechanical deformation materials. Comparative analysis of the FTIR spectra of single polyelectrolytes, chitosan and alginate, and their mixtures indicated the formation of the polyelectrolyte complex without addition of reinforcing substances. MALDI-TOF analysis confirms the creation of polyelectrolyte aggregates (~197 Da) in samples with R ≥ 0.8; and their chemical stability and safety were proven by NMR analysis. The higher R the greater the number of polyanion–polycation aggregates seen in SEM as film morphology roughness.

143 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal properties and fire behavior of polypropylene (PP) nanocomposites were investigated using differential scanning calorimetry, dynamic-mechanical analysis, thermogravimetric analysis and glow wire test.

143 citations

Journal ArticleDOI
TL;DR: A series of flame retardant polylactide composites (FR-PLA) based on aluminum hypophosphite (AHP) were facilely prepared by melt blending method.
Abstract: A series of flame retardant polylactide composites (FR-PLA) based on aluminum hypophosphite (AHP) were facilely prepared by melt blending method. The thermal behavior, flammability, and mechanical properties of FR-PLA composites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), the UL-94 vertical burning test, limiting oxygen index (LOI), cone calorimeter testing, microscale combustion calorimetry, mechanical testing, and dynamic mechanical analysis (DMA). TGA results showed that the FR-PLA composites presented higher char residue and reduced mass loss rate than neat PLA. The FR-PLA composite showed excellent fire resistance, from no rating of neat PLA to a V0 rating of FR-PLA containing 20 wt % aluminum hypophosphite in the UL-94 test. The microscale combustion calorimetry test showed that the heat release capacity, the peak of heat release and the total heat release of FR-PLA composites were significantly decreased with the increase of AHP content. The cone ...

143 citations

Journal ArticleDOI
TL;DR: A theoretical model is proposed to explain the size dependence of TC and it is revealed that with increase of surface-to-volume ratio of Ni nanoparticles due to decrease of particle size, there is increase of the percentage of magnetically inactive layer.
Abstract: By means of thermal decomposition, we prepared single-phase spherical Ni nanoparticles (23 to 114 nm in diameter) that are face-centered cubic in structure. The magnetic properties of the Ni nanoparticles were experimentally as well as theoretically investigated as a function of particle size. By means of thermogravimetric/differential thermal analysis, the Curie temperature TC of the 23-, 45-, 80-, and 114-nm Ni particles was found to be 335°C, 346°C, 351°C, and 354°C, respectively. Based on the size-and-shape dependence model of cohesive energy, a theoretical model is proposed to explain the size dependence of TC. The measurement of magnetic hysteresis loop reveals that the saturation magnetization MS and remanent magnetization increase and the coercivity decreases monotonously with increasing particle size, indicating a distinct size effect. By adopting a simplified theoretical model, we obtained MS values that are in good agreement with the experimental ones. Furthermore, with increase of surface-to-volume ratio of Ni nanoparticles due to decrease of particle size, there is increase of the percentage of magnetically inactive layer.

143 citations

Journal ArticleDOI
TL;DR: The glass transition temperature of the hard-segment phase and the storage modulus of segmented polyurethane increased substantially in the presence of tethered nano-sized layered silicates from montmorillonite compared with their pristine state.
Abstract: The glass transition temperature of the hard-segment phase and the storage modulus of segmented polyurethane increased substantially in the presence of a small amount of tethered nano-sized layered silicates from montmorillonite compared with their pristine state (by 44°C and by 2.8-fold, respectively). Furthermore, the heat resistance and degradation kinetics of these montmorillonite/polyurethane nanocomposites were enhanced, as shown by thermogravimetric analysis. In particular, a 40°C increase in the degradation temperature and a 14% increase in the degradation activation energy occurred in polyurethane containing 1 wt % trihydroxyl swelling agent-modified montmorillonite compared to that of the pristine polyurethane. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1741–1748, 2002

143 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
91% related
Aqueous solution
189.5K papers, 3.4M citations
89% related
Polymerization
147.9K papers, 2.7M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
88% related
Adsorption
226.4K papers, 5.9M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20232,906
20225,921
20212,097
20202,157
20192,095