scispace - formally typeset
Search or ask a question
Topic

Thermogravimetric analysis

About: Thermogravimetric analysis is a research topic. Over the lifetime, 37248 publications have been published within this topic receiving 862144 citations. The topic is also known as: thermal gravimetric analysis & TGA.


Papers
More filters
Journal ArticleDOI
TL;DR: A facile and scalable process for the in situ formation of Fe3O4 nanocrystals in a pre-formed carbon foam (CF) was developed, which involved impregnation of an aqueous iron nitrate solution onto CF followed by controlled thermal treatment in an inert atmosphere as discussed by the authors.
Abstract: A facile and scalable process for the in situ formation of Fe3O4 nanocrystals in a pre-formed carbon foam (CF) (Fe3O4/CF) was developed, which involved impregnation of an aqueous iron nitrate solution onto CF followed by controlled thermal treatment in an inert atmosphere. N2adsorption/desorption and BET measurements showed that the CF was a mesoporous carbon with a high pore volume and specific surface area. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction measurement, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS) revealed that 5–50 nm Fe3O4 nanocrystals at a high loading of 78.7 wt% were formed preferentially in the confined pores of CF. When tested for anode material in a Li ion half-cell, the Fe3O4/CF composite was far superior to unsupported Fe3O4 nanocrystals, exhibiting significantly improved Coulombic efficiencies and cycling stability and achieving >780 mA h g−1 after 50 deep charge–discharge cycles with >95% cycling efficiency.

205 citations

Journal ArticleDOI
TL;DR: The use of phthalates in plasticized polyvinyl chloride (PVC) formulations has been questioned by their potential toxicity and high migration to foodstuff as mentioned in this paper, which has also proved an efficient stabilizer for PVC helping to prevent degradation during processing.

205 citations

Journal ArticleDOI
TL;DR: In this article, Li4SiO4 was synthesized by three different techniques: solid-state reaction, precipitation, and sol−gel (using a microwave oven) methods, and different particle sizes were obtained as a function of the method of synthesis, and the CO2 sorption analyses gave different results.
Abstract: Lithium orthosilicate (Li4SiO4) was synthesized by three different techniques: the solid-state reaction, precipitation, and sol−gel (using a microwave oven) methods. The better results were obtained by the two first methods. In the third case, pure Li4SiO4 could not be obtained, because the microwaves produced the lithium sublimation. The samples were characterized by X-ray diffraction, scanning electron microscopy, N2 adsorption, and thermogravimetric analysis under a flux of CO2. Different particles sizes were obtained as a function of the method of synthesis, and the CO2 sorption analyses gave different results. The particle size modified the stability of the Li4SiO4 during the CO2 sorption/desorption cycles, due to lithium sublimation, as Li2O. Conversely, the isothermal study allowed measuring the kinetic parameters for the chemisorption and diffusion processes, as a function of the particle size. As could be expected, the activation energies obtained, for the small particles, were smaller than thos...

204 citations

Journal ArticleDOI
TL;DR: In this paper, a self-polymerization of levodopa (DOPA) on the surface of molybdenum disulfide (MoS2) under a weak alkaline solution is presented.

204 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of metal compounds on flame retardancy performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (petol) in poly(propylene) (PP) was investigated.
Abstract: Divalent and multivalent metallic compounds catalyze the flame retardancy performance of intumescent systems based on ammonium polyphosphate (APP) and pentaerythritol (petol) in poly(propylene) (PP). The catalytic effect is shown by increases in the oxygen index (OI) and UL-94 ratings. The effect is exerted by small concentrations of the metallic compounds in the range of 0.1–2.5 wt% of the compositions. The effect increases with the concentration of the catalyst until a maximum is reached. At higher concentrations of the catalyst a decrease in the flame retardancy parameters is observed, accompanied in several cases by a degradation and discoloration of the composition. The catalyst replaces melamine in intumescent systems. Catalytic effectiveness is defined and calculated for a number of compounds. Thermogravimetric parameters, such as initial decomposition temperature, temperature of the transition point and residue-after-transitions (RAT) change in parallel with the catalytic effect of the metal compound concentration. Metal compounds investigated include oxides, acetates, acetyl acetonates, borates and sulfates of Mn, Zn, Mg, Al, Ca, Ba, V, Co, Ni, Cu, Mo, Zr, and Cr. Mechanistic considerations on the activity of the catalysts are presented. Copyright © 2003 John Wiley & Sons, Ltd.

204 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
91% related
Aqueous solution
189.5K papers, 3.4M citations
89% related
Polymerization
147.9K papers, 2.7M citations
88% related
Nanoparticle
85.9K papers, 2.6M citations
88% related
Adsorption
226.4K papers, 5.9M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20232,906
20225,921
20212,097
20202,157
20192,095