scispace - formally typeset
Search or ask a question
Topic

Thermoplastic

About: Thermoplastic is a research topic. Over the lifetime, 41486 publications have been published within this topic receiving 359402 citations. The topic is also known as: thermoplastic polymer & thermoplastic resin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a carbon fiber reinforced plastic (CFRP) composite is used for Fused Deposition Modeling (FDM) of thermoplastic matrix CFRP composites.
Abstract: Additive manufacturing (AM) technologies have been successfully applied in various applications. Fused deposition modeling (FDM), one of the most popular AM techniques, is the most widely used method for fabricating thermoplastic parts those are mainly used as rapid prototypes for functional testing with advantages of low cost, minimal wastage, and ease of material change. Due to the intrinsically limited mechanical properties of pure thermoplastic materials, there is a critical need to improve mechanical properties for FDM-fabricated pure thermoplastic parts. One of the possible methods is adding reinforced materials (such as carbon fibers) into plastic materials to form thermoplastic matrix carbon fiber reinforced plastic (CFRP) composites those could be directly used in the actual application areas, such as aerospace, automotive, and wind energy. This paper is going to present FDM of thermoplastic matrix CFRP composites and test if adding carbon fiber (different content and length) can improve the mechanical properties of FDM-fabricated parts. The CFRP feedstock filaments were fabricated from plastic pellets and carbon fiber powders for FDM process. After FDM fabrication, effects on the tensile properties (including tensile strength, Young's modulus, toughness, yield strength, and ductility) and flexural properties (including flexural stress, flexural modulus, flexural toughness, and flexural yield strength) of specimens were experimentally investigated. In order to explore the parts fracture reasons during tensile and flexural tests, fracture interface of CFRP composite specimens after tensile testing and flexural testing was observed and analyzed using SEM micrograph.

1,133 citations

Patent
04 Oct 1976
TL;DR: In this paper, a non-woven fabric-like material comprising an integrated mat of generally discontinuous, thermoplastic polymeric microfibers and a web of substantially continuous and randomly deposited, molecularly oriented filaments of a thermopolymeranical polymer is presented.
Abstract: A non-woven fabric-like material comprising an integrated mat of generally discontinuous, thermoplastic polymeric microfibers and a web of substantially continuous and randomly deposited, molecularly oriented filaments of a thermoplastic polymer. The polymeric microfibers have an average fiber diameter of up to about 10 microns while the average diameter of filaments in the continuous filament web is in excess of about 12 microns. Attachment between the microfiber mat and continuous filament web is achieved at intermittent discrete regions in a manner so as to integrate the continuous filament web into an effective load bearing constituent of the material. The material has desirable strength characteristics and possesses a textile-like appearance, drape and hand. By autogenously bonding the mat and web together in a manner so as to provide substantially uniform discrete bond regions, particularly outstanding strength characteristics with respect to energy absorption, tensile strength, and tear resistance can be achieved.

834 citations

Journal ArticleDOI
TL;DR: Theshape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature, and the shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field.
Abstract: In shape-memory polymers, changes in shape are mostly induced by heating, and exceeding a specific switching temperature, Tswitch. If polymers cannot be warmed up by heat transfer using a hot liquid or gaseous medium, noncontact triggering will be required. In this article, the magnetically induced shape-memory effect of composites from magnetic nanoparticles and thermoplastic shape-memory polymers is introduced. A polyetherurethane (TFX) and a biodegradable multiblock copolymer (PDC) with poly(p-dioxanone) as hard segment and poly(e-caprolactone) as soft segment were investigated as matrix component. Nanoparticles consisting of an iron(III)oxide core in a silica matrix could be processed into both polymers. A homogeneous particle distribution in TFX could be shown. Compounds have suitable elastic and thermal properties for the shape-memory functionalization. Temporary shapes of TFX compounds were obtained by elongating at increased temperature and subsequent cooling under constant stress. Cold-drawing of PDC compounds at 25°C resulted in temporary fixation of the mechanical deformation by 50–60%. The shape-memory effect of both composite systems could be induced by inductive heating in an alternating magnetic field (f = 258 kHz; H = 30 kA·m−1). The maximum temperatures achievable by inductive heating in a specific magnetic field depend on sample geometry and nanoparticle content. Shape recovery rates of composites resulting from magnetic triggering are comparable to those obtained by increasing the environmental temperature.

759 citations

Journal ArticleDOI
TL;DR: The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology.
Abstract: We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites.

722 citations

Journal ArticleDOI
TL;DR: In this article, a review of the thermal processing of starch-based polymers is presented, including both fundamental science such as microstructure, phase transition and rheology, as well as processing techniques, conditions and formulations.

655 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
88% related
Polymer
131.4K papers, 2.6M citations
86% related
Nanocomposite
71.3K papers, 1.9M citations
86% related
Polymerization
147.9K papers, 2.7M citations
84% related
Scanning electron microscope
74.7K papers, 1.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023648
20221,247
2021560
2020927
20191,017
20181,012