scispace - formally typeset
Search or ask a question
Topic

Thin-film transistor

About: Thin-film transistor is a research topic. Over the lifetime, 48425 publications have been published within this topic receiving 680879 citations. The topic is also known as: TFT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a solution-processed p-type oxide TFTs based on a high-k dielectric are achieved, which represents a great step towards the achievement of low-cost, all-oxide, and low-power consumption CMOS logics.
Abstract: Solution-processed metal-oxide thin films based on high dielectric constant (k) materials have been extensively studied for use in low-cost and high-performance thin-film transistors (TFTs). Here, scandium oxide (ScOx) is fabricated as a TFT dielectric with excellent electrical properties using a novel water-inducement method. The thin films are annealed at various temperatures and characterized by using X-ray diffraction, atomic-force microscopy, X-ray photoelectron spectroscopy, optical spectroscopy, and a series of electrical measurements. The optimized ScOx thin film exhibits a low-leakage current density of 0.2 nA cm−2 at 2 MV cm−1, a large areal capacitance of 460 nF cm−2 at 20 Hz and a permittivity of 12.1. To verify the possible applications of ScOx thin films as the gate dielectric in complementary metal oxide semiconductor (CMOS) electronics, they were integrated in both n-type InZnO (IZO) and p-type CuO TFTs for testing. The water-induced full oxide IZO/ScOx TFTs exhibit an excellent performance, including a high electron mobility of 27.7 cm2 V−1 s−1, a large current ratio (Ion/Ioff) of 2.7 × 107 and high stability. Moreover, as far as we know it is the first time that solution-processed p-type oxide TFTs based on a high-k dielectric are achieved. The as-fabricated p-type CuO/ScOx TFTs exhibit a large Ion/Ioff of around 105 and a hole mobility of 0.8 cm2 V−1 at an operating voltage of 3 V. To the best of our knowledge, these electrical parameters are among the highest performances for solution-processed p-type TFTs, which represents a great step towards the achievement of low-cost, all-oxide, and low-power consumption CMOS logics.

136 citations

Patent
24 Sep 1993
TL;DR: In this paper, a thin film transistor structure for a liquid crystal display device of the active matrix type, wherein leak current is suppressed to stabilize the threshold voltage and the dispersion in the gate capacitance coupling and the channel length are minimized, is disclosed.
Abstract: A thin film transistor structure for a liquid crystal display device of the active matrix type, wherein leak current is suppressed to stabilize the threshold voltage and the dispersion in the gate capacitance coupling and the channel length are minimized, is disclosed. The liquid crystal display device comprises a substrate having picture element electrodes arranged in a matrix and switching elements for driving the picture element electrodes, another substrate having opposing electrodes thereon and opposed to the former substrate, and a liquid crystal layer held between the substrates. Each switching element has a multi-gate structure wherein two thin film transistors are connected in series and gate electrodes are electrically connected to each other. Each thin film transistor has a lightly doped drain structure wherein a low density impurity region of the same conductivity type as that of a source region or a drain region is provided at least between the source or drain region and a channel region. At least one of a plurality of such low density impurity regions may have a length or a density different from that of the other low density impurity regions so as to assure sufficient on-current while suppressing the leak current.

135 citations

Patent
27 Nov 1989
TL;DR: In this paper, a thin film semiconductor which comprises a substrate, a single crystalline silicone thin film layer and an intermediate layer disposed between the substrate and the single-crystalline silicon thin film is presented.
Abstract: A thin film semiconductor which comprises a substrate, a single crystalline silicone thin film layer and an intermediate layer disposed between the substrate and the single-crystalline silicon thin film layer. Coefficient of the thermal expansion of the intermediate layer is between those of the substrate and the single-crystalline silicon. The intermediate layer absorbs thermal stress and relaxes strain remaining in the silicon layer, which strain is generated due to difference of thermal expansion coefficient between the substrate and the silicon layer. Due to the arrangement of the intermediate layer, it becomes possible to use various material as the substrate without generating micro-cracks and produce a semiconductor device using a large sized substrate.

135 citations

Patent
29 Jun 2004
TL;DR: An organic electroluminescent device includes: first and second substrates facing each other and spaced apart from each other, the first two substrates having a central portion and a peripheral portion, an array layer on the first substrate, the array layer including a thin film transistor; an organic electro-luminescence diode on the second substrate; a connection pattern between the first and two substrate as discussed by the authors.
Abstract: An organic electroluminescent device includes: first and second substrates facing each other and spaced apart from each other, the first and second substrates having a central portion and a peripheral portion; an array layer on the first substrate, the array layer including a thin film transistor; an organic electroluminescent diode on the second substrate; a connection pattern between the first and second substrates, the connection pattern electrically connecting the thin film transistor and the organic electroluminescent diode; and a seal pattern in the peripheral portion, the seal pattern including a metallic material for attaching the first and second substrates.

135 citations

Patent
03 Apr 2008
TL;DR: An organic electroluminescent display device includes at least a driving TFT and pixels which are formed by organic EH elements and are provided on a substrate of the TFT.
Abstract: An organic electroluminescent display device includes at least a driving TFT and pixels which are formed by organic electroluminescent elements and are provided on a substrate of the TFT. The driving TFT includes at least a substrate, a gate electrode, a gate insulating film, an active layer, a source electrode, and a drain electrode. The driving TFT further includes a resistive layer between the active layer and at least one of the source electrode and the drain electrode. The pixels include at least one color-modified pixel which has a color filter that modifies the emission color of the color-modified pixel, and which emits light of the modified color.

135 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Band gap
86.8K papers, 2.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023341
2022918
2021640
20201,333
20192,015
20182,080