scispace - formally typeset
Search or ask a question
Topic

Thin-film transistor

About: Thin-film transistor is a research topic. Over the lifetime, 48425 publications have been published within this topic receiving 680879 citations. The topic is also known as: TFT.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the mechanisms underlying visible light detection based on phototransistors fabricated using amorphous oxide semiconductor technology and present a gate pulsing scheme enabling realistic frame rates for advanced applications such as sensor-embedded display for touch-free interaction.
Abstract: This paper reviews the mechanisms underlying visible light detection based on phototransistors fabricated using amorphous oxide semiconductor technology. Although this family of materials is perceived to be optically transparent, the presence of oxygen deficiency defects, such as vacancies, located at subgap states, and their ionization under illumination, gives rise to absorption of blue and green photons. At higher energies, we have the usual band-to-band absorption. In particular, the oxygen defects remain ionized even after illumination ceases, leading to persistent photoconductivity, which can limit the frame-rate of active matrix imaging arrays. However, the persistence in photoconductivity can be overcome through deployment of a gate pulsing scheme enabling realistic frame rates for advanced applications such as sensor-embedded display for touch-free interaction.

134 citations

Patent
11 Jul 1994
TL;DR: In this paper, the outer periphery of the active layer of each thin transistors is oxidized to provide an oxide insulating film, provided that the transistors are isolated by oxidizing the inner periphery of each of them.
Abstract: A semiconductor device comprising at least two thin film transistors on a substrate having an insulating surface thereon, provided that the thin film transistors are isolated by oxidizing the outer periphery of the active layer of each of the thin film transistors to the bottom to provide an oxide insulating film.

134 citations

Journal ArticleDOI
TL;DR: In this article, the elastic deformation of the transistor is correlated with small increase in the electron mobility and cracks start to form when the tensile strain reaches 0.34, and burst formation starts and causes an abrupt change in the transistor performance.

134 citations

Journal ArticleDOI
TL;DR: The results show that sputter-CVD is a viable method to synthesize large-area, high-quality, and layer-controlled MoS2 that can be adapted in conventional Si-based microfabrication technology and future flexible,high-temperature, and radiation hard electronics/optoelectronics.
Abstract: Two-dimensional MoS2 is a promising material for next-generation electronic and optoelectronic devices due to its unique electrical and optical properties including the band gap modulation with film thickness. Although MoS2 has shown excellent properties, wafer-scale production with layer control from single to few layers has yet to be demonstrated. The present study explored the large-scale and thickness-modulated growth of atomically thin MoS2 on Si/SiO2 substrates using a two-step sputtering–CVD method. Our process exhibited wafer-scale fabrication and successful thickness modulation of MoS2 layers from monolayer (0.72 nm) to multilayer (12.69 nm) with high uniformity. Electrical measurements on MoS2 field effect transistors (FETs) revealed a p-type semiconductor behavior with much higher field effect mobility and current on/off ratio as compared to previously reported CVD grown MoS2-FETs and amorphous silicon (a-Si) thin film transistors. Our results show that sputter–CVD is a viable method to synthes...

134 citations

Patent
08 Mar 1994
TL;DR: In this article, a small amount of a catalyst element for promoting crystallization is added to an amorphous silicon film, and an annealing process is conducted at a temperature which is lower than the distortion temperature of a substrate, thereby crystallizing the amorphized silicon film.
Abstract: A substance containing a catalyst element is formed so as to closely contact with an amorphous silicon film, or a catalyst element is introduced into the amorphous silicon film. The amorphous silicon film is annealed at a temperature which is lower than a crystallization temperature of usual amorphous silicon, thereby selectively crystallizing the amorphous silicon film. The crystallized region is used as a crystalline silicon TFT which can be used in a peripheral driver circuit of an active matrix circuit. The region which remains amorphous is used as an amorphous silicon TFT which can be used in a pixel circuit. A relatively small amount of a catalyst element for promoting crystallization is added to an amorphous silicon film, and an annealing process is conducted at a temperature which is lower than the distortion temperature of a substrate, thereby crystallizing the amorphous silicon film. A gate insulating film, and a gate electrode are then formed, and an impurity is implanted in a self-alignment manner. A film containing a catalyst element for promoting crystallization is closely contacted with the impurity region, or a relatively large amount of a catalyst element is introduced into the impurity region by an ion implantation or the like. Then, an annealing process is conducted at a temperature which is lower than the distortion temperature of the substrate, thereby activating the doping impurity.

133 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Photoluminescence
83.4K papers, 1.8M citations
87% related
Band gap
86.8K papers, 2.2M citations
87% related
Quantum dot
76.7K papers, 1.9M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023341
2022918
2021640
20201,333
20192,015
20182,080